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1 Introduction

For the past half a century, classical computers and their operations have been
primarily developed through studies on classical information theory, where in-
formation is fundamentally built from units that take either the value of 0 or 1,
more formally known as classical bits. However more recently, there has been
increased attention towards the application of quantum-effects and concepts
to store and transmit information. This field, known as quantum information
theory, is an extension of classical information theory that uses a different fun-
damental unit, the qubit, to store information. While a classical bit can only be
two possible states, the state of a qubit is the superposition of two states, and
therefore can theoretically encode an infinite number of classical bits. Addition-
ally, it is possible for information between multiple qubits to be correlated in
a way that is fundamentally impossible for classical bits to achieve through a
phenomenon known as quantum entanglement. Nevertheless, there are certain
limitations within quantum information theory such as the no-cloning theorem
that was proved in 1982 by Wootters and Zurek [9] that lead to interesting
discussions on the formulation of quantum algorithms and their implications.

2 Background

In the study of physics, a physical system is generally described by its state;
that is, what is going on in the system itself. An isolated system is one in
which energy does not flow in or out of the system, and there are no external
forces on the system. For the rest of the paper, we consider any defined system
to be isolated, although in practice this is not technically the case unless we
consider everything to be one giant isolated system. We begin with four major
postulates surrounding quantum mechanics stated from [1], then move onto a
discussion of classical versus the more recent quantum information theory, and
finally conclude with a proof and discussion on the no-cloning theorem that
develops the relationship between classical and quantum information theory.
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Postulate I: The Hilbert Space

In quantum mechanics, an isolated physical system has an associated inner prod-
uct space H such that the state of the physical system is described by a unit
vector u ∈ H. H is generally described to be a Hilbert Space, whose properties
are described below:

A Hilbert space H is a vector space with an inner product such that the norm
is described by

Given u ∈ H, ||u|| =
√
〈u, u〉

with the property that the metric defined by the norm is complete. In other
words, every Cauchy sequence of elements converges to an element in the space.

Examples of a complete metric space would be Rk for positive k, as proved
in intro to analysis. It should be noted that Hilbert spaces are generally defined
to be infinite-dimensional [3]. However, more recently finite-dimensional inner
product spaces with the properties above have also been defined to be Hilbert
spaces.

Proposition: The complex vector space Cn with the Euclidean inner prod-
uct is a Hilbert space.
Proof: Clearly Cn is a vector space. Using the norm described for Cn with the
Euclidean inner product,

Let u = (x1 + iy1, x2 + iy2, ..., xn + iyn) ∈ C for x1, ..., xn, y1, ..., yn ∈ R

||u|| =
√
x21 + y21 + ...+ x2n + y2n

Notice that the metric on Cn induced by the norm above is same as the Eu-
clidean metric on R2n induced by the Euclidean norm, where we describe
u = (x1, y1, x2, y2, ..., xn, yn) ∈ R2n. Therefore, because the Euclidean space
Rk for positive k is known to have a metric that is complete[6], it follows that
Cn also has a metric that is complete. Thus, Cn with the Euclidean inner prod-
uct is a Hilbert space. �

For simplicity, we will work on a 2-dimensional Hilbert space C2 with a canon-
ical basis {|0〉, |1〉}. Note that describing a vector in the form |·〉 is called Dirac
notation, where its corresponding dual vector is denoted as 〈·|. We can also
define function composition from a linear operator A and 〈ϕ |A as [1]

(〈ϕ |A)|ψ〉 = 〈ϕ |(A|ψ〉) (1)

As mentioned earlier, the state of our physical system is described a unit vector
|ϕ〉, which can be written as a linear combination of our canonical basis:

|ϕ〉 = a|0〉+ b|1〉 where |a|2 + |b|2 = 1
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Compared to the case of classical bits which can be represented as either 0 or
1, we note that our unit vector |ϕ〉 is represented as a superposition of |0〉 and
|1〉. We call this system a qubit, which is the quantum analog to the classical bit
in information theory. We will further discuss the significance of working with
qubits in section 3.

Postulate II: Evolution of the State of a System

In quantum mechanics, the time evolution of the state |ϕt〉 of a closed quantum
system is described using Schrödinger’s Equation,

i~
d|ϕt〉
dt

= U |ϕt〉

where ~ is Planck’s constant and U is an isometry called the Hamiltonian of the
system. The analog below follows from the above postulate:

Suppose we can describe the system at time t1 as |ϕt1〉 and the system at time
t2 > t1 as |ϕt2〉. Then there exists an isometry U ∈ L(H) such that

|ϕt2〉 = U |ϕt1〉

Part of Postulate II is that any isometry describes a certain evolution on the
state of a physical system. In the case of qubits, there are several common
isometries called the Pauli Matrices that are used as logical gates in quantum
circuits. These isometries often have classical gate analogs.

Example I:
Below are a few examples of matrices of isometries with respect to the compu-
tational basis:

1 =

(
1 0
0 1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
Postulate III: Measurement Operators

While a quantum state is in constant superposition with probabilities deter-
mined by the amplitudes of the state, we ultimately need a way to measure
the state. Postulate III states that there exists a collection of operators {Mn}n
that describe a measurement on a quantum state in a Hilbert space H such that
given a state |ϕ〉 prior to measurement, the probability that the outcome S of
measuring the state M(|ϕ〉) is n is

P(S = n) = 〈ϕ |M∗nMn|ϕ〉

and the state after measurement is

Mn|ϕ〉√
P(S = n)
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The above probabilities also satisfy the laws of probability, so∑
n

M∗nMn = I

Example II
Considering H = C2, the collection of measurement operators is defined as

M0 = |0〉〈0| and M1 = |1〉〈1|

Notice that these operators are projections that sum to 1. We also see that for
an arbitrary state |ϕ〉 = a|0〉+ b|1〉,

P(S = 0) = |a|2 and P(S = 1) = |b|2

as expected from our discussion of superposition and amplitudes in the section
on Postulate I.

In the above example the measurement operators were projections, although
this is not always necessarily true. There are a class of measurements known
as projective measurements that consist of orthogonal projections that are
extremely useful for computations. Measurement operators on quantum sys-
tems are a very important topic with a rich set of research attached; while they
will not be discussed much further in this write-up, they are relevant for most
quantum information theory topics.

Postulate IV: State of Composite Quantum Systems

We can often model quantum systems by composing them into a larger, com-
posite quantum system. Postulate IV states that we can represent the state
of this composition system as a tensor product of the states of the individual
systems,

|ϕ1〉 ⊗ ...⊗ |ϕm〉
An intuitive explanation for why this representation is a tensor product rather
than a Cartesian product is that when describing general probability distribu-
tions for an m-composite system with n unique states, it is easier to deal with
a vector space with mn dimensions, where each basis vector corresponds to a
unique system and state pair [6].

An important part of postulate IV is that there exists non-elementary ten-
sor products in the tensor product of several Hilbert spaces, which allow for a
special property known as quantum entanglement where the quantum states of
multiple particles cannot be described independently of each other (section 3.1)
[10].

Example III
A common example of such a tensor product is the Bell state |ϕ〉 ∈ C2 ⊗ C2:

|Φ+〉 =
|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉√

2
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3 Representation of Information

In the previous section, we discussed the representation of quantum bits and
their relation to physical systems. We now focus more on the computational
aspect of quantum information and stray away from the influence of physical
factors. In 1948, Claude Shannon published a revolutionary paper on informa-
tion theory [4] that led to advances in data compression, communication, and
error correction systems. The basic unit of information in classical information
theory, which we know as the bit, takes on states in {0, 1}, and is what we use
to store information in our modern computing devices. The qubit introduced
in Postulate I is the quantum analog to the bit, which can take a superposition
of the classical bit states until it is measured. In the following example, we
show why qubits are of interest in information theory as a new basic unit of
information:

Example IV: Superdense Coding
Suppose Noah wants to send two classical bits of information d ∈ {00, 01, 10, 11}
to his friend Areeq. We consider a Bell state qubit pair, where the first qubit
is shared between Noah and Areeq beforehand. Noah can actually send a sin-
gle qubit (the other Bell state qubit) to Areeq to transmit two classical bits of
information. The importance of such a system is that the first qubit can be
shared/sent at any time in the past independent of the time that the second
qubit is send any two bits of information [11].

For clarity, the Bell state represents the state of both qubits, which are en-
tangled as mentioned in Example III. So

|ψ〉 =
|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉√

2

where the first index in each tensor product represents the first qubit, and the
second index in each tensor product represents the second qubit. Assume that
the second qubit represents the shared qubit which is fixed, and the first qubit
represents the qubit to be sent. Then we see that Noah can prepare his qubit
by applying the isometries from Example I,

Applying 1 |0〉⊗|0〉+|1〉⊗|1〉√
2

Applying σx
|1〉⊗|0〉+|0〉⊗|1〉√

2

Applying σz
|0〉⊗|0〉−|1〉⊗|1〉√

2

Applying iσy
−|1〉⊗|0〉+|0〉⊗|1〉√

2

So the bell state changes accordingly. But the above set of transformations
results in a basis for C2 ⊗ C2 known as the Bell basis, in which by Postulate II
there exists a convenient measurement so we can extract a certain 2-bit string
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with probability 1: 

|0〉⊗|0〉+|1〉⊗|1〉√
2

→ 00
|1〉⊗|0〉+|0〉⊗|1〉√

2
→ 10

|0〉⊗|0〉−|1〉⊗|1〉√
2

→ 01
−|1〉⊗|0〉+|0〉⊗|1〉√

2
→ 11

Since Areeq now has the entire Bell state, he can convert based using measure-
ments based on the above basis to decode the 2-bit string that Noah sent.

From the example above it would seem as though the qubit is more efficient
than the bit in terms of data movement operations. However, there are a few
limitations to qubit computation, especially in data manipulation, that make
working with quantum information more difficult. The next section describes
the no-cloning theorem, which implies that data copying techniques must be
more complicated in quantum systems.

The No-cloning Theorem

In classical information theory, the use of an XOR gate allows us to take an
unknown bit x as a control bit and clone it into a target bit y [3]. The follow-
ing theorem implies that the quantum analog to the XOR gate, known as the
CNOT gate, does not have the same effect:

Theorem: It is impossible to clone an unknown pure quantum state from
a unitary evolution.

Proof: Suppose we are given two quantum systems A and B on a common
Hilbert space H where the state of A, denoted as |ϕ〉A, is unknown. We have
some initial state of the composite system defined as

|ϕ〉 ⊗ |σ〉B

where |ϕ〉 is the unknown state to be copied and |σ〉 is some state independent
of state A that will be replaced with a copy of state A. We also assume that
the state of A and B are pure tensors; that is that they can be represented as
a single elementary tensor.

We want to show that there does not exist an isometry U on H ⊗ H such
that

U(|ϕ〉A ⊗ |σ〉B) = |ϕ〉A ⊗ |ϕ〉B (2)

For simplicity, we use the notation

|ϕ〉 ⊗ |σ〉 = |ϕ〉|σ〉
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Suppose for the sake of contradiction that (2) is true. It follows that given two
arbitrary pure states |ϕ〉 and |ψ〉,

U(|ϕ〉A ⊗ |σ〉B) = |ϕ〉A ⊗ |ϕ〉B

U(|ψ〉A ⊗ |σ〉B) = |ψ〉A ⊗ |ψ〉B
If we take the inner product of the two states ϕ,ψ and some arbitrary basis
vector e with norm 1,

〈ϕ |ψ〉 = 〈ϕ |ψ〉〈e|e〉

Using the function composition definition of Dirac notation in (1),

= 〈ϕ |〈e|(e〉)ψ〉

Using definition 7.37 in [8], that isometries preserve norms/inner products and
that an isometry composed with its adjoint is the identity operator, we see that

= [〈ϕ |〈e|U∗][U |ψ〉|e〉]

which based on the Dirac notation can be rearranged as

= (|ϕ〉|e〉, U∗U |ψ〉|e〉)

where (·, ·) denotes the standard inner product on H ⊗H. By the property of
adjoints on inner products from [8],

= (U |ϕ〉|e〉, U |ψ〉|e〉)

Finally, using (2),
= (|ϕ〉|ϕ〉, |ψ〉|ψ〉)

= 〈ϕ |〈ϕ |ψ〉|ψ〉

= |〈ϕ |ϕ〉|2

In other words,
|〈ϕ |ψ〉| = |〈ϕ |ψ〉|2

Because quantum states are described using vectors with norm 1, we see that
the above expression implies that either

〈ϕ |ψ〉 = 0 or 〈ϕ |ψ〉 = 1

which we know from 6.23 in [8] implies that either ϕ and ψ are equal or or-
thonormal. But we assumed ϕ and ψ to be arbitrary unit vectors, in which
there exists infinitely many vectors that are non-equal and not orthogonal in H.
Thus, we have a contradiction, and (2) must not be true, so it must be the case
that we cannot clone an unknown pure quantum state from a unitary evolution,
and therefore the no-cloning theorem is proved. �
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Generalizing the No-cloning Theorem

The no-cloning theorem makes an assumption that the state being copied is a
pure tensor. This assumption is valid because of the Schrödinger–HJW theorem,
which proves that mixed states can be ”purified” into pure states [12].

Implications

There are several consequences of the no-cloning theorem. Firstly, classical
error correction techniques such as using backup copies of states during com-
putation are impossible [8]. Error correction in quantum systems is already a
large problem and the no-cloning theorem forces the development of less intu-
itive techniques to minimize error.

In quantum cryptography paradigms, the no-cloning theorem actually ensures
copies of transmitted keys cannot be made, and is thus important for preventing
eavesdroppers from stealing information [8]. Note however that the no-cloning
theorem makes no implications on approximate cloning; it only proves that per-
fect copies of a quantum state cannot be made. Thus, in quantum cryptography
there are still probabilistic techniques that can be used to estimate approximate
copies of a state.

Finally, there are several corollaries to the no-cloning theorem that fall un-
der the more general family of no-go theorems. For example, the reversed dual
of the no-cloning theorem, known as the no-deleting theorem, states that given
two copies of an arbitrary state, it is impossible to fully delete one of them [13].
A corollary of the no-cloning theorem, known as the no-broadcasting theorem,
states that it is impossible to broadcast a state to multiple recipients such that
each receive their own copy [5]. Each of the theorems impose certain restric-
tions on quantum computations and have led to the development of numerous
quantum algorithms designed to exploit their properties or work-around them.
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