
Robustness of Overparameterized Deep Learning

Alex Zhang 1

1Department of Computer Science, Princeton University
alzhang@princeton.edu

Contents

1 Introduction 1

2 Background 2

2.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 ϵ-nets, Covering numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3 Subgaussian Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.4 Concentration Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.5 Isoperimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Preliminary bounds on shallow neural networks 3

4 Lower bounds on Lipschitz constant 4

5 Upper bounds on Lipschitz constant 10

1 Introduction

Deep learning has become the ubiquitous technique for data-driven applications. However, neural net-
works are notoriously treated as blackbox objects, so a key question when using these models is how to
characterize their robustness — i.e. can we ensure that (potentially adversarial) perturbations do not drasti-
cally influence the output of our learned models?

A natural characterization of robustness is the Lipschitz constant of a neural network. More formally, given
an input domain D in some Euclidean space (e.g. Rd), the Lipschitz constant of a neural network f : D → R
is defined as

Lip (f(x)) ≜ sup
x,y∈D,x ̸=y

|f(x)− f(y)|
∥x− y∥2

(1)



A suite of recent works have attempted to characterize the relationship between the number of parameters
and the Lipschitz constant/robustness of general classes of neural networks [BS22]. A desirable property
to have is to O(1)-Lipschitz networks because they are inherently smooth and provide guarantees against
adversarial perturbations data. The relationship between the Lipschitz constant of a learned network and
the number of learnable parameters it has is therefore of great interest. We look into lower bounds, which
motivate the necessity of overparameterized models for a reasonable Lipschitz constant, and upper bounds,
which derive the actual robustness of a network with respect to its number of parameters.

2 Background

2.1 Neural networks

We describe deep neural networks with d input neurons, 1 output neurons, and L hidden layers of width
N as follows:

Φ : Rd → R, Φ(x) ≜
(
V (L) ◦ σ ◦ V (L−1) ◦ ... ◦ σ ◦ V (0)

)
(x) (2)

where σ is some non-linear activation function and

V (ℓ)(x) ≜ W (ℓ)x+ b(ℓ) (3)

where W (0) ∈ RN×d,W (ℓ) ∈ RN×N , b(ℓ) ∈ R1×N , bL ∈ R are learnable components.

2.1.1 Activation functions

There are several non-linear activation functions used in neural networks. A common function is

ReLU(x) ≜ max{0, x}, x ∈ R (4)

or
Sigmoid(x) ≜

1

1 + e−x
, x ∈ R (5)

For the remaining background, we recall theorems and definitions described in [Han24] and [Ver18] and
refer the reader to those sources for proofs unless stated otherwise.

2.2 ϵ-nets, Covering numbers

Definition 2.1 (ϵ-net). A set N is an ϵ-net for a metric space (T, d) if for every t ∈ T , there exists π(t) ∈ N
such that d(t, π(t)) ≤ ϵ.

Definition 2.2 (Covering number). For a metric space (T, d), the ϵ-net

N (T,D, ϵ) ≜ inf {|N |: N is an ϵ-net for (T, d)}

is called a covering set, and |N | is called the covering number.

Lemma 2.1 (Bounds on covering number over unit ball). On the unit Euclidean ball Bn
2 , for any ϵ > 0.(

1

ϵ

)n

≤ N (Bn
2 , ∥·∥, ϵ) ≤

(
1 +

2

ϵ

)n
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The following proposition is found in [[Geu+24], D.4] and is a special case of Dudley’s Entropy Integral
([Han24], Corollary 6.23).

Lemma 2.2 (Dudley’s Entropy Inequality). There exists a constant C > 0 such that for any T ⊆ Rd with 0 ∈ T
and a random vector X ∈ Rd that is i.i.d. coordinate-wise distributed as ∼ N (0, 1), then for any u ≥ 0, with
probability ≥ 1− 2exp(−u2),

sup
t∈T

⟨X, t⟩ ≤ C

(∫ ∞

0

√
ln(N (T, ∥·∥2, ϵ))dϵ+ u · diam(T)

)

2.3 Subgaussian Random Variables

Definition 2.3. A random variable X is called σ2 subgaussian if

P[|X|≥ t] ≤ 2 exp
(
−t2/σ2

)
Lemma 2.3. Suppose X1, ..., Xn are independent σ2-subgaussian random variables with mean 0. Then Z =
1√
n

∑n
i=1 Xi is 18σ2-subgaussian.

2.4 Concentration Inequalities

Theorem 2.1 (Azuma-Hoeffding). Let {Fk}k≤n be a filtration and ∆k, Ak, Bk be such that

1. ∆k is Fk-measurable and E [∆K |Fk−1] = 0.

2. Ak, Bk are Fk−1 measurable and Ak ≤ ∆k ≤ Bk almost surely.

Then
∑n

k=1 ∆k is 1
4

∑n
k=1∥Bk −Ak∥2∞-subgaussian. In particular, combining with Definition 2.3, for all t ≥ 0,

P

[
n∑

k=1

∆k ≥ t

]
≤ exp

(
− 2t2∑n

k=1∥Bk −Ak∥2∞

)

2.5 Isoperimetry

Theorem 2.2 (c-isoperimetry). A probability measure µ on a Euclidean space (say Rd) is c-isoperimetric if for any
bounded L-Lipschitz function f , we have that for t ≥ 0,

P [|f − Ef |≥ t] ≤ 2 exp(−dt2/2cL2)

Put simply, the isoperimetry condition describes a class of data distributions where Lipschitz functions con-
centrate well. One may also notice that the above expression looks suspiciously similar to the subgaussian
condition, and indeed under re-scaling, isoperimetry implies any Lipschitz function is O(1)-subgaussian. It
turns out that a wide range of common distributions satisfy isoperimetry, such as high-dimensional Gaus-
sian distributions and strongly log-concave measures in a normed space.

3 Preliminary bounds on shallow neural networks

A preliminary conjecture on the relationship between dataset size, data dimensionality, model size, and
robustness was first introduced in [BLN20]. Here, they assume the data x1, ..., xn are i.i.d uniform on the
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sphere Sd−1 = {x ∈ Rd : ∥x∥2= 1} with corresponding labels y1, ..., yn in {1,−1}. Their analysis focuses on
the case of two-layer shallow neural networks with p neurons of the form

f(x) =

p∑
ℓ=1

αℓ · σℓ(⟨wℓ,x⟩+ bℓ) (6)

where αℓ, βℓ are constants, w1, ...,wp ∈ Rd are learnable weights, and σℓ is an O(1)-Lipschitz activation
function. We denote the class of functions where σℓ(x) = max{0, x} as Fp.

Theorem 3.1 (Existence of robust classifier). Let n denote the number of data points, d denote the dimension of
the data, and p denote the number of parameters. For arbitrary constant C, suppose

C · n log n

d
≤ p ≤ C · n

Then over data points in Sd−1, with probability ≥ 1− 1
nC , there exists an f ∈ Fp such that

f(xi) = yi for all i ∈ [n] (perfect classifier)

Lip(f) ≤ C · n log d

p
(robustness condition)

Proof sketch: The full proof of Theorem 3.1 found in [BLN20] is quite dense, but the high-level idea is quite
simple. For a sufficiently sized p, we can assign each neuron wℓ, ℓ ∈ [p] to a specific cap of the sphere Sd−1

that share the same label. We can ensure with high probability that this neuron ignores all other data points
using the fact that σℓ(x) = max{0, x}, so summing these neurons gives us a classifier in Fp that perfectly
classifies the dataset. The proof concludes with a probabilistic bound over which neurons are non-zero with
respect to an input point followed by a union bound over the points to show the Lipschitz condition (with
high probability). □

However, there are many restrictive assumptions in Theorem 3.1 that can be peeled away. Firstly, the
assumption of data that lies on Sd−1 (the authors also argue that this extends well to Gaussian data) is
quite restrictive and not necessarily representative of distributions we encounter in real life applications.
Secondly, the restriction of analysis to shallow neural networks does not lend itself well to modern neural
networks. We divide the remaining sections based on works that attempt to lower bound the Lipschitz
constant (i.e. show that more parameters are necessary but not sufficient for robustness) and upper bound
the Lipschitz constant (i.e. show that more parameters are sufficient but not necessary for robustness).
Finally, the existence of a perfect classifier is often unnecessary, as most data-driven applications assume
some level of noise.

4 Lower bounds on Lipschitz constant

Lower bound analysis of the Lipschitz constant attempts to formalize the necessity of large neural net-
works for robustness. In other words, they prove that neural networks of a small enough size cannot deal
with adversarial perturbations. In [BS22], they prove a lower bound on the Lipschitz constant of a function
class where the data distribution is a convex combination of distributions that obey c-isoperimetry. We
first prove a weaker theorem that assumes the distribution satisfies c-isoperimetry before generalizing and
include a few more steps from the original proof for clarity.

Lemma 4.1. Suppose we have a dataset of i.i.d. points x1, ..., xn ∈ Rd with corresponding labels y1, ..., yn ∈ {1,−1}.
For an arbitrary finite function class F and data distribution such that σ2 ≜ Eµ [Var[y|x]] > 0, it follows that

P

(
∃f ∈ F :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ

)
≤ 2 exp

(
−nϵ2

83

)
+ P

(
∃f ∈ F :

1

n

n∑
i=1

f(xi)(yi − E[y|x]) ≥ ϵ

4

)
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Proof. For notational convenience, define

g(x) ≜ E[y|x]
zi ≜ yi − g(xi)

Observe that

E[z2i ] = E[(yi − E[yi|xi])
2] = E[E[(yi − E[yi|xi])

2|xi]] = E[Var(yi|xi)] = σ2

Furthermore, because yi ∈ {−1, 1}, by [[Han24], Lemma 2.1] we know σ2 ≤ 1, and therefore |zi|2≤ 4. We
can therefore apply Azuma-Hoeffding’s inequality (Theorem 2.1) on the sequence ( 1nz

2
i )i∈[n]:

P

(
σ2 − 1

n

n∑
i=1

z2i ≥ ϵ

6

)
≤ exp

(
− nϵ2

8 · 62

)
≤ exp

(
−nϵ2

83

)
Re-writing, we get

P

(
1

n

n∑
i=1

z2i ≤ σ2 − ϵ

6

)
≤ exp

(
−nϵ2

83

)
(7)

Furthermore, observe that E[zig(xi)] = g(xi)E[zi] = 0 and similar to the above reasoning, |zig(xi)|≤ 4 (this
is a loose bound, but it suffices for the proof). Thus, we obtain the same Azuma-Hoeffding’s bound on the
sequence ( 1nzig(xi))i∈[n]

P

(
− 1

n

n∑
i=1

zig(xi) ≥
ϵ

6

)
≤ exp

(
− nϵ2

8 · 62

)
≤ exp

(
−nϵ2

83

)
Re-writing, we get

P

(
1

n

n∑
i=1

zig(xi) ≤ − ϵ

6

)
≤ exp

(
−nϵ2

83

)
(8)

We relate these quantities to any function f ∈ F as follows. Consider the vectors

F =

(
1√
n
f(x1),

1√
n
f(x2), ...,

1√
n
f(xn)

)
for some f ∈ F

G =

(
1√
n
g(x1),

1√
n
g(x2), ...,

1√
n
g(xn)

)
Z =

(
1√
n
z(x1),

1√
n
z(x2), ...,

1√
n
z(xn)

)

We can therefore rewrite Equation 7 and Equation 8 as

P
(
⟨Z,Z⟩ ≤ σ2 − ϵ

6

)
≤ exp

(
−nϵ2

83

)
P
(
⟨Z,G⟩ ≤ − ϵ

6

)
≤ exp

(
−nϵ2

83

)
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Observe that if ⟨Z,Z⟩ > σ2 − ϵ
6 and ⟨Z,G⟩ > − ϵ

6 (i.e. the events described in Equation 7 and Equation 8 do
not hold), then for any f ∈ F , if ∥Z +G− F∥2≥ σ2 − ϵ, we have

σ2 − ϵ ≥ ∥Z +G− F∥2

= ∥Z∥2+2⟨Z,G− F ⟩+ ∥G− F∥2

= ∥Z∥2+2⟨Z,G⟩ − 2⟨Z,F ⟩+ ∥G− F∥2

> σ2 − ϵ

6
− ϵ

3
− 2⟨Z,F ⟩+ ∥G− F∥2 (Replace with assumptions)

≥ σ2 − ϵ

2
− 2⟨Z,F ⟩ (Norms are positive)

which implies the necessary condition that ⟨Z,F ⟩ ≥ ϵ
4 . Since f was arbitrary, we only care about the

existence of f ∈ F that satisfies the above conditions.

In other words, either the event ⟨Z,Z⟩ ≤ σ2 − ϵ
6 or ⟨Z,G⟩ ≤ − ϵ

6 occurs, or a necessary condition for the
event ∥Z +G− F∥2≥ σ2 − ϵ is ⟨F,Z⟩ ≥ ϵ

4 . We conclude using the union bound that

P
(
∃f ∈ F : ∥Z +G− F∥2≤ σ2 − ϵ

)
≤ 2 exp

(
−nϵ2

83

)
+ P

(
∃f ∈ F : ⟨Z,F ⟩ ≥ ϵ

4

)
which expands to

P

(
∃f ∈ F :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ

)
≤ 2 exp

(
−nϵ2

83

)
+ P

(
∃f ∈ F :

1

n

n∑
i=1

f(xi)(yi − E[y|x]) ≥ ϵ

4

)

as desired.

The lemma above says nothing about the function class F itself or the data distribution and is therefore
hard to apply in practice, so we move to a more specific condition that we can mold into the robustness
condition.

Theorem 4.1 (Finite Lipschitz Class Error Bound). Suppose we have a dataset of i.i.d. points x1, ..., xn ∈ Rd

with corresponding labels y1, ..., yn ∈ {1,−1}. If

1. The distribution µ of the xi’s satisfies c-isoperimetry.

2. σ2 ≜ Eµ [Var[y|x]] > 0

Then for a finite function class F of L-Lipschitz functions and for all ϵ > 0,

P

(
∃f ∈ F :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ

)
≤ 4 exp

(
−nϵ2

83

)
+ 2 exp

(
log(|F|)− ϵ2nd

104cL2

)

Proof. Without loss of generality, assume functions in F are in [−1, 1] (if not, we can simply clip the values,
improving both the Lipschitz constant bound and the fit to the labels).

First, consider the random variable

h(xi) =

√
d

c

f(xi)− E[f(xi)]

L
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which has mean 0 and is now a
√

d
c -Lipschitz function. By the isoperimetry condition of the xi’s (Theo-

rem 2.2),

P (|h(xi)|≥ t) ≤ 2 exp

(
− dt2

2c
(
d
c

)) = 2 exp
(
−t2/2

)
so h(xi) is 2-subgaussian. Furthermore, because |zi|≤ 2,

P (|h(xi)zi|≥ t) ≤ P (2|h(xi)|≥ t)

= P
(
|h(xi)|≥

t

2

)
≤ 2 exp

(
−t2/8

)
so h(xi)zi is 8-subgaussian. Furthermore, by the tower property ([Dem21], Proposition 2.3.5),

E[h(xi)zi] = E[E[h(xi)zi|xi]] = 0

So by the subgaussian lemma (2.3), 1√
n

∑n
i=1 h(xi)zi is 8 · 18 = 144-subgaussian. Thus,

P

(
1√
n

n∑
i=1

h(xi)zi ≥ t

)
≤ 2 exp(−t2/122)

P

(√
d

ncL2

n∑
i=1

(f(xi)− E[f(xi)]) zi ≥ t

)
≤ 2 exp(−t2/122) Plug in for h

Now let t =
√

ndϵ2

64cL2 .

P

(
1

n

n∑
i=1

(f(xi)− E[f(xi)]) zi ≥
ϵ

8

)
≤ 2 exp

(
− ndϵ2

82 · 122cL2

)
≤ 2 exp

(
− ndϵ2

104cL2

)
(9)

Similar to the previous analysis, we again consider two disjoint events that cover the entire sample space.
Consider the disjoint events E1 ≜ {∃f ∈ F : 1

n

∑n
i=1 E[f(xi)]zi ≥ ϵ

8} and E2 ≜ {∄f ∈ F : 1
n

∑n
i=1 E[f(xi)]zi ≥

ϵ
8}. To relate our solution to Lemma 4.1, notice by the law of total probability that

P

[
∃f ∈ F :

n∑
i=1

f(xi)zi ≥
ϵ

4

]
≤ αP[E1] + P

[
∃f ∈ F :

1

n

n∑
i=1

(f(xi)− E[f(xi)]) zi ≥
ϵ

8

]
P[E2]

≤ P[E1] + P

[
∃f ∈ F :

1

n

n∑
i=1

(f(xi)− E[f(xi)]) zi ≥
ϵ

8

]

for some 0 < α < 1 (it represents the probability of an event that we do not specify because we throw
it away). We can bound P[E1] with Azuma-Hoeffding’s inequality (Theorem 2.1) by noticing that E[f ] ∈
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[−1, 1] and |zi|≤ 2, so

P[E1] = P

[
∃f ∈ F :

1

n

n∑
i=1

E[f(xi)]zi ≥
ϵ

8

]

≤ P

[
1

n

∣∣∣∣ n∑
i=1

zi

∣∣∣∣ ≥ ϵ

8

]
≤ 2 exp

(
−nϵ2/83

)
Finally, we can bound the second term using a simple union bound over each f ∈ F , giving us

P

[
∃f ∈ F :

n∑
i=1

f(xi)zi ≥
ϵ

4

]
≤ 2 exp

(
−nϵ2/83

)
+ |F|·P

[
1

n

n∑
i=1

(f(xi)− E[f(xi)]) zi ≥
ϵ

8

]

≤ 2 exp
(
−nϵ2/83

)
+ 2|F|· exp

(
− ndϵ2

104cL2

)
where we plugged in Equation 9 at the last step. Finally, we replace the relevant term in Lemma 4.1 to
obtain the desired result.

A stronger condition for data drawn from arbitrary convex combinations of isoperimetric distributions rather
than an isoperimetric distribution is proved in [BS22], which we state without proof. The main difference
is the original subgaussian bound we obtain using the isoperimetric inequality and controlling the mixed
distribution to obtain nicer bounds.

Theorem 4.2 (Generalization of Theorem 4.1 to Convex Combinations of Isoperimetric Distributions). Sup-
pose we have a dataset of i.i.d. points x1, ..., xn ∈ Rd with corresponding labels y1, ..., yn ∈ {1,−1}. There exists
absolute constants C1, C2 such that if

1. The distribution µ of the xi’s can be written as a convex sum of distributions µj that satisfy c-isoperimetry.

2. σ2 ≜ Eµ [Var[y|x]] > 0

3. The dimension d ≥ C1 ·
(

cL2σ2

ϵ2

)
.

Then for a finite function class F of L-Lipschitz functions and for all ϵ > 0,

P

(
∃f ∈ F :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ

)
≤ (4k + 1) exp

(
−nϵ2

83k

)
+ exp

(
log(|F|)− ϵ2nd

C2cL2σ2

)

The above gives us enough tooling to prove the main theorem.

Remark. The theorem below proved in [BS22] seems rather loose. I tried to keep the constants as tight as
possible in the proof below, which is why the proofs/results may slightly differ.

Theorem 4.3 (Robustness-Lipschitz Lower Bound). Suppose we have a dataset of i.i.d. points x1, ..., xn ∈ Rd

with corresponding labels y1, ..., yn ∈ {1,−1}. Fix ϵ, δ ∈ (0, 1). There exists absolute constants C1, C2 such that if

1. The function class can be written as F = {fw : w ∈ W} where W ⊂ Rp, diam (W) ≤ W . Furthermore, for
any w1,w2 ∈ W ,

∥fw1 − fw2∥∞≤ J∥w1 −w2∥

8



2. The distribution µ of the xi’s can be written as a convex sum of k distributions µj that satisfy c-isoperimetry.
Furthermore,

2 · 84k log(8k/δ) ≤ nϵ2 (10)

3. σ2 ≜ Eµ [Var[y|x]] > 0

4. The dimension d ≥ C1 ·
(

cL2σ2

ϵ2

)
.

Then with probability at least 1− δ with respect to sampling the data, for all f ∈ F, if

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ

then we have

Lip(f) ≥ ϵ

σ
√
C2c

√
nd

p log (1 + 32JWϵ−1 + log(4/δ))

Proof. Let WL ⊂ W be defined as

WL ≜ {w ∈ W : Lip(fw ≤ L}

We define the covering ϵ
8J -net WL,ϵ of WL. Then, applying Lemma 2.1 over a normalized space (by a factor

of 2W to get a subset of the unit ball), we have

|WL,ϵ|≤
(
1 + 32JWϵ−1

)p
By Theorem 4.2 over our ϵ-net (now a finite function class FL,ϵ ≜ {fw : w ∈ WL,ϵ}),

P

(
∃f ∈ FL,ϵ :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ/2

)
≤ (4k + 1) exp

(
− nϵ2

4 · 83k

)
+ exp

(
p log(1 + 32JWϵ−1)− ϵ2nd

C2cL2σ2

)

Observe that to go from functions in fL,ϵ ∈ FL,ϵ to functions in fL ∈ FL, if

1

n

n∑
i=1

(yi − fL,ϵ)
2 ≤ ϵ

2
+

1

n

n∑
i=1

(yi − fL)
2 (11)

then we incur a cost ∥fL,ϵ − fL∥≤ ϵ
8 because fL,ϵ, fL, yi all satisfy ∥·∥∞≤ 1. Therefore, for some constant

C > 0 and L > 0,

P

(
∃f ∈ FL :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ

)
≤ (4k + 1) exp

(
− nϵ2

2 · 84k

)
+ exp

(
p log(1 + 32JWϵ−1)− ϵ2nd

CcL2σ2

)
Finally, by Equation 10,

(4k + 1) exp

(
− nϵ2

4 · 83k

)
≤ (4k + 1)δ

8k
≤ 3δ

4

9



and for some large enough C2 > 0,

exp

(
p log(1 + 32JWϵ−1)− ϵ2nd

C2cL2σ2

)
≤ e− log(4/δ) =

δ

4

allowing us to conclude that

L ≤ ϵ

C2σ
√
c

√
nd

p log(1 + 32JWϵ−1) + log(4/δ)

implies that

P

(
∃f ∈ FL :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ

)
≤ δ

giving us the desired result.

Remark. The application of the above lower bound to deep learning is quite simple. The isoperimetry
condition used to control the class of Lipschitz functions is a property of the data distribution, so it is in-
dependent of the choice of model used. We can explicitly enforce a bound on the Lipschitz constant of a
neural network by enforcing a bound on the weights, allowing us to apply this analysis to deep learning
neural networks. Of course, it applies to a much wider class of models, but the observation that overpa-
rameterization is necessary to find a robust classifier for isoperimetric distributions is especially interesting
as an explanation to why overparameterized regimes have found empirical success in deep learning.

5 Upper bounds on Lipschitz constant

We focus on results from [Geu+24], which consider networks of the form Equation 2 with ReLU activation
functions. While the aforementioned lower bounds give us a necessary overparameterization condition for
robustness, they do not bound the control itself, meaning overparameterized networks may also be non-
robust. This section is a different flavor of analysis that looks into upper bounding the Lipschitz constant of
deep neural networks independent of their data distribution or number of samples. These proofs are quite
dense, so for brevity we only include full proofs when the intuition is useful.

Theorem 5.1 (Lipschitz upper bound for deep neural networks). For random deep neural networks of the form
Equation 2 with ReLU activations such that for all 0 ≤ ℓ < L,(

W (ℓ)
)
i,j

∼ N (0,
2

N
),
(
W (L)

)
1,j

∼ N (0, 1)

while the biases are i.i.d. from some arbitrary bounded symmetric distribution about 0. Then, there exists constants
C, c1 > 0 such that if N > d+ 2 and f : Rd → R, then

Lip(f) ≤ C · (3
√
2)L ·

√
L ·

√
ln

(
eN

d+ 1

)
·
√
d (12)

We begin with a recursive definition of the gradient of a ReLU network (which is not everywhere differen-
tiable). For 0 ≤ ℓ < L

D(ℓ)(x) ≜ ∆
(
W (ℓ)x(ℓ) + b(ℓ)

)
x(ℓ+1) ≜ D(ℓ)(x)

(
W (ℓ)x(ℓ) + b(ℓ)

)
= ReLU

(
W (ℓ)x(ℓ) + b(ℓ)

)
(13)

We make of the following two lemmas from [Geu+24], which we use without proof.
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Lemma 5.1. Assume d+ 2 < N and fix W (0), ...,W (L−1), b(0), ..., b(L−1). Then for

D ≜
{(

D(L−1)(x), ..., D(0)(x)
)
: x ∈ Rd

}
It follows that

|D|≤
(

eN

d+ 1

)L(d+1)

The proof by induction is found in [Geu+24], Lemma 5.7.

Lemma 5.2. Assume d+ 2 < N and fix W (0), ...,W (L−1), b(0), ..., b(L−1). Define

Λ ≜ ∥W (L−1)∥2· · ·∥W (0)∥2

For x ∈ Rd and z ∈ B̄d(0, 1), let

Yz,x ≜ D(L−1)(x)W (L−1) · · ·D(0)(x) ·W (0)z ∈ Rd

L ≜

{
Yz,x : x ∈ Rd, z ∈ B̄d(0, 1)

}
⊆ Rd

Then, for any ϵ ∈ (0,Λ), we can bound the covering number

N (L, ∥·∥2, ϵ) ≤
(
3Λ

ϵ

)d

·
(

eN

d+ 1

)L(d+1)

We prove the next lemma, which uses Dudley’s inequality (Lemma 2.2) as the core tool for eventually
deriving our Lipschitz bound.

Lemma 5.3. Under the same assumptions as Lemma 5.2, there exist an absolute constant C such that given any
u ≥ 0, with probability ≥ 1− 2 exp(−u2) with respect to the choice of W (L),

sup
x∈Rd

∥W (L) ·D(L−1)(x) ·W (L−1) · · ·D(0)(x) ·W (0)∥2≤ C ·
∫ Λ

0

√
ln (N (L, ∥·∥2, ϵ))dϵ

Proof. For some y ∈ L,

∥y∥2 = ∥D(L−1)(x) ·W (L−1) · · ·D(0)(x) ·W (0)z∥2
≤ ∥D(L−1)(x)∥2∥W (L−1)∥2· · ·∥D(0)(x)∥2·∥W (0)∥2·∥z∥2
≤ ∥W (L−1)∥2· · ·∥W (0)∥2= Λ

where by construction, each ∥D(ℓ)(x)∥2≤ 1 and ∥z∥2≤ 1, giving us the last inequality. Finally, we can
replace our desired left-hand side as

sup
x∈Rd

∥W (L) ·D(L−1)(x) ·W (L−1) · · ·D(0)(x) ·W (0)∥2 = sup
x∈Rd,z∈B̄d(0,1)

〈(
W (L)

)T
, Yz,x

〉
=sup

Y ∈L

〈(
W (L)

)T
, Y

〉
Since 0 ∈ L implies we can cover L with one ball when ϵ ≥ Λ and L ⊆ B̄N (0,Λ) =⇒ diam(L) ≤ 2Λ, we
can apply Dudley’s inequality (Lemma 2.2) to obtain the desired bound.
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Lemma 5.4. Under the same assumptions as Lemma 5.2, there exist an absolute constant C such that given any
u ≥ 0, with probability ≥ 1− 2 exp(−u2) with respect to the choice of W (L),

sup
x∈Rd

∥W (L) ·D(L−1)(x) ·W (L−1) · · ·D(0)(x) ·W (0)∥2≤ C · Λ ·
√
L ·

√
ln

(
eN

d+ 1

)
· (
√
d+ u)

Proof. From Lemma 5.2, we get

√
ln(N (L, ∥·∥2, ϵ)) ≤

√
d ln

(
3Λ

ϵ

)
+ L(d+ 1) ln

(
eN

d+ 1

)

≤

√
d ln

(
3Λ

ϵ

)
+

√
L(d+ 1) ln

(
eN

d+ 1

)
This conveniently allows us to derive an upper bound for Dudley’s integral∫ Λ

0

√
ln(N (L, ∥·∥2, ϵ))dϵ ≤

√
d

∫ Λ

0

√
ln

(
3Λ

ϵ

)
dϵ+ Λ ·

√
L(d+ 1) ln

(
eN

d+ 1

)

≤ Λ ·

(
C1 ·

√
d+

√
L(d+ 1) ln

(
eN

d+ 1

))

≤ C2 · Λ ·
√
Ld · ln

√(
eN

d+ 1

)
for constants C1, C2 (we use the fact that N > d+2). Finally, we plug into the right-hand side of Lemma 5.3
to get that for a constant C3 > 0 and any u > 0, with probability ≥ 1− 2 exp(−u2) with respect to the choice
of W (L),

sup
x∈Rd

∥W (L) ·D(L−1)(x) ·W (L−1) · · ·D(0)(x) ·W (0)∥2≤ C2C3 · Λ ·
√
L ·

√
ln

(
eN

d+ 1

)
· (
√
d+ u)

as desired.

Proof sketch of Theorem 5.1: We first observe that the ReLU network f is a composition of Lipschitz continuous
functions such that

Lip(f) ≤ sup
x∈Rd

∥W (L) ·D(L−1)(x) ·W (L−1) · · ·D(0)(x) ·W (0)∥2

which is what the previous lemmas were upper bounding with high probability. The remainder of the
proof is to bound each W (ℓ) to massage the constants and obtain the desired bound, but we leave that for
[Geu+24].

Remark. The tools above are rather specific to deep learning methods, but are still restrictive with respect
to modern practical models that use mechanisms like attention [Vas+23]. Furthermore, a universal law for
upper bounding Lipschitz constants with respect to model size has not been proven — hence characterizing
robustness is still an unsolved problem.
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