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Abstract

Neural networks are known to be overparameterized and larger than necessary, and
therefore compressing these networks for both memory efficiency and speed-ups
is a key area of research. One avenue for compressing these networks is through
network pruning, where certain network parameters are removed using some met-
ric to produce a significantly smaller subnetwork. Network pruning aligns itself
well with Frankle et al.’s Lottery Ticket Hypothesis [1], which posits that only
a small subnetwork of the original network is necessary for similar performance.
Another method of interest is sparse factorizations of weight matrices that ap-
proximate linear transformations in the neural network with fewer parameters and
efficient composition methods like sparse matrix vector (SpMV) kernels for sig-
nificant forward pass speed-ups. In Dao et. al, they show that many classes of ma-
trices can be approximately decomposed recursively into butterfly matrices, which
have a nice structure for efficiently computing matrix multiplications [2, 3]. In this
work, we investigate the fusion of these two methods on fully-connected networks
acting on MNIST and VGG16 on CIFAR-10 to see whether pruning methods are
robust enough to work with factorization methods. We find that introducing low-
rank factored matrix decompositions like Butterfly matrices into the model prior
to using an iterative pruning method effectively functions as a pruning step un-
der a different pruning metric, which often conflicts with metrics like the gradient
signal or weight thresholding used by most iterative pruning methods, leading to
faster layer collapse. However, prior to layer collapse, the performance of prun-
ing methods with or without these decompositions is relatively similar, while the
layers that are pruned more aggressively are different.

1 Introduction

With the modern emphasis on overparameterized models and their emergent capabilities, neural
network training has become increasingly resource hungry and slow. Aside from improving hard-
ware capabilities and low-level compute costs, there has been a lot of interest in condensing model
architectures either through pruning redundant weights, sparse approximations of well-known archi-
tectures, or distilling architectures [4, 5]. However, there is little successful theoretical work that
describes the precise redundancies in an overparameterized model that can be removed.

In [1], they propose that randomly-initialized dense feedforward networks contain sparser subnet-
works that can be trained in isolation to achieve similar performance, an idea which they dub the
"Lottery Ticket Hypothesis". This hypothesis has major on implications on pruning methods in gen-
eral, as most prior work focuses on fully-training a dense neural network, then trimming it down
through iterative pruning steps while maintaining similar performance to the original method. In-
stead, if we can figure out a method for finding "lottery ticket" subnetworks, we can train sparse
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networks without actually training the dense network to completion. Such an idea has led to sev-
eral works that focus on pruning on random initialization based on various factors such as gradient
signals or activation signals, which we further explore in this paper [6, 7, 8].

Parallel to these pruning ideas, prior work has explored replacing networks parameters with low-rank
approximations or decompositions by assuming many of these parameters are low rank in nature [9].
Without making any assumptions about the expressivity of these matrices, [2, 3] have explored the
use of several small, structured, block-diagonal matrices as approximate factorizations of parameter
weight matrices based on divide-and-conquer ideas used in the Discrete-Fourier transform algorithm.
With a proper sparse matrix-vector multiplication (SpMV) and sparse matrix-matrix multiplication
(SpMM) kernel, these methods reduce the run-time of forward passes of the model, further com-
pressing model architecture sizes while also providing inference speed-up benefits.

In this work, we explore the interplay between sparse pruning and weight matrix decomposition
methods, and discuss their performance benefits both in isolation and when used together. We
generally focus our experiments on

1. The accuracy of the sparse/pruned models compared to the original dense version.

2. The limits of each method based on the degree of the pruning being done and the number
of parameters being factorized.

3. The relative inference speed and FLOPS sparsity changes from introducing sparse, low-
rank layer decompositions prior to pruning.

2 Related Works

In this section, I describe various methods for network pruning and sparse matrix decomposition
that lead to the use of fewer trainable model parameters for both training and inference speed-ups,
as well as smaller memory usage.

2.1 Network Pruning

Network pruning is a method in which a subset of the networks weights are ignored according to
some pre-defined or learnable rule to decrease the number of computations. While most methods
focus on pruning a pre-trained network or pruning during training [10], these methods require both
a fully trained dense network to prune and the computation of forward passes on these networks as
well [4].

Model pruning The general network pruning process is as follows. Given a network f(x, θ) that
takes an input x and is parameterized by weights θ, we want to build a mask M ∈ {0, 1}|θ| to
find a f(x, θ

⊙
M) ≈ f(x, θ). The standard pruning method involves training a model f(x, θ) to

convergence, then iteratively prune and fine-tune the mask Mi for i ∈ [n] steps.

Model pre-initialization pruning Pruning networks at initialization is promising in that it is both
general and far more efficient than other pruning methods. In [6], they propose connection sensitivity
as the metric for determining which weights to prune in a method they call SNIP, with the primary
goal being to preserve the loss during training. However, in [8], they observe that SNIP often
prunes entire layers, creating significant bottlenecks. Instead, they propose GraSP, and they design a
metric for preserving gradient flow. Finally, in [7], they propose a magnitude-based iterative pruning
method that uses certain proven conservation laws to prevent model benefits as the level of sparsity
is increased.

2.2 Sparse Matrix Decomposition

A large point of discussion is whether pruning itself is necessary, and whether a smaller base archi-
tecture would suffice. Parallel to this thought is the decomposition of weight matrices into a product
of structured lower-rank matrices whose product can be efficiently computed with an efficient sparse
matrix-vector (SpMV) kernel [2].
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Learnable Factorized Matrices Low-rank approximations of weight matrices are easier to reason
about if the structure of the weight matrix is known before-hand, such as if it is a Discrete Fourier
Transform (DFT) matrix. In [2], they propose a general weight matrix decomposition scheme based
on divide-and-conquer methods like polynomial multiplication that decomposes a weight matrix into
a sequence of "butterfly matrices", which are small sparse block diagonal matrices. They provide
the following definition, which can be summarized as a butterfly matrix is an approximation of a
matrix that is a product of butterfly factor matrices, which are block diagonal-matrices where each
block is a butterfly factor. More formally,
Definition 1. Let k be a power of 2. A butterfly factor of size k ≥ 2 is a matrix Bk of the form[
D11 D12

D21 D22

]
where each Dij is a k

2 × k
2 -square diagonal matrix

Definition 2. A butterfly factor matrix is a n× n square-matrix with block-size k, denoted as B(n)
k ,

that is written as
B

(n)
k = diag([Bk]1, ..., [Bk]nk )

where each [Bk]i for i ∈ [nk ] is a butterfly factor.

Definition 3. A butterfly matrix is a n × n square-matrix, denoted as B(n), that can be written as
a product of butterfly factor matrices of the form

B(n) = B(n)
n B

(n)
n/2B

(n)
n/4...B

(n)
2

In [3], they build upon their previous butterfly matrix work and propose a family of matrices called
the Kaleidoscope hiearchy, or K-matrices, that are composed of products of Butterfly matrices and
their conjugate transposes in a differentiable manner.

3 Method

In this paper, we explore the effects of interspersing existing pruning methods and matrix factor-
ization methods on image classification networks. In particular, we investigate whether applying a
mixture of sparse-factorized layers and pruning to dense layers leads to any differences in speed-ups,
as well as potential layer collapse issues. We specifically focus on factorizing just the final classifi-
cation head or factorizing all layers in the model, and we only apply pruning methods to the dense
layers.

3.1 Methods of Introducing Sparsity

We explore 5 pruning methods, namely random pruning, magnitude-based pruning, SNIP, GraSP,
and SynFlow, as well as 2 sparse matrix factorization methods, namely Butterfly matrix decomposi-
tion for fully-connected layers and Kaleidoscope or K-matrix decomposition for 2D convolutional
layers. Notably, other than magnitude-based pruning, the examined pruning methods prune an un-
trained model on initialization based on a variety of metrics that also influence which layers/neurons
tend to get aggressively pruned. When introducing layers composed of the product of several struc-
tured low-rank matrices, it is interesting to investigate which pruning methods begin to suffer from
layer collapse.

3.2 Base Model Architectures

Similar to the pruning assignment, we use a simple MLP classifier that consists of L = 6 linear
layers with a ReLU non-linearity for the MNIST dataset, and VGG16 on the CIFAR-10 dataset.
In our experiments, we either replace the final classification head of the MLP or VGG16 with a
butterfly-factorized linear layer, or every linear layer with a butterfly-factorized linear layer. In the
case of VGG16, we replace 2D convolutional layers with an equivalent K-matrix representation. All
experiments use a learning rate of 0.001, a drop-out rate of 0.1 on all layers, a batch-size of 256, and
the Adam optimizer with default settings. All experiments were run on a single NVIDIA GeForce
RTX 3090.
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3.3 Choice of Factorization Layers

The implementation of the Butterfly matrices and Kaleidoscope matrices makes it difficult to ex-
plicitly prune. Additionally, because [2, 3] meant for Butterfly matrices to be a principled way to
perform pruning, it was strange to perform an additional pruning step on these layers. Thus, all
Butterfly/K-matrix layers are explicitly not pruned using the methods presented. Additionally, we
focus on introducing Butterfly matrices either at the classification head or throughout the entire net-
work to test whether introducing low-rank maps at the final step introduces any bottlenecks with
evaluated the pruning methods.

4 Experiments

Dataset Architecture Rand Mag SNIP GraSP SynFlow Butterfly + K-Matrix

CIFAR-10 VGG16 10.00 87.36 73.21 29.17 79.75 88.01
MNIST FC 94.49 97.57 95.54 94.74 11.35 96.49

Butterfly head
CIFAR-10 VGG16 10.00 10.00 86.52 14.04 87.47 88.12
MNIST FC 94.84 97.25 96.00 94.63 11.35 97.44

Table 1: Reported top-1 accuracies on MNIST and CIFAR-10 for pruning methods with sparsity 0.1.
In the bottom half of the table, the final classification head is a Butterfly matrix. In the column But-
terfly + K matrix, instead of applying pruning, the entire model is replaced with Butterfly matrices
for linear layers and K matrices for 2D convolutional layers. Each model was trained for 50 epochs
post-pruning, and the Mag pruning model was also pre-trained for 10 epochs.

4.1 Fixing the sparsity at 0.1 and adding butterfly matrices

Mimicking the experiments from the Pruning assignment, the following results are reported for test
accuracy (top 1) on either CIFAR-10 or MNIST with 10−1 sparsity in Table 1. In addition to eval-
uating the pruning methods, we evaluate the replacement of all fully-connected layers in either the
FC or VGG16 models, and also the replacement of just the final head with additional pruning. Not-
icably, introducing Butterfly matrices at the classification head does affect whether pruning method
exhibits layer collapse early on, specifically in the case of Magnitude pruning, and replacing each
layer with a butterfly/Kaleidoscope matrix generally yields better accuracy, although at the cost of
higher inference times. The higher inference times are most likely due to an inefficiencies in the
implemented Butterfly matrix multiplication kernel, which can potentially be fixed.

4.2 Effects of Aggressive Pruning with Factorized Prediction Heads

Following the structure of the pruning assignment, we closely investigate the effects of chang-
ing the sparsity on VGG16 applied to the CIFAR-10 dataset. Based on sparsity values in
{0.05, 0.1, 0.2, 0.5, 1, 2}, we look at how the replacement of prunable layers with sparse butterfly
factorizations affects the inference speed, accuracy, and overall FLOPS sparsity of the models.

Effect on Inference Speeds In [2], they suggest that Butterfly matrices are a more structured
and well-behaved version of pruning. However, the results presented in Table 2 are quite interest-
ing, as they suggest actually that most pre-initialization pruning methods do not pair well with an
already-pruned classification head. Additionally, magnitude-based pruning, which performs weight
thresholding by pre-training on the data, has a ≈ 5× inference speed slow-down with the introduc-
tion of a single Butterfly matrix layer head under the same hyperparameters as the original Pruning
assignment, and the model itself actually completely collapses if pre-training for too long. A poten-
tial explanation is that magnitude-based pruning, which tries to keep the last layer dense based on
heuristics, fails when the last layer is inherently not dense.

For the rest of the pruning methods, generally it is observed that introducing a Butterfly-matrix clas-
sification head does not affect inference speeds much. Any minor differences in speeds is generally
a result of noise, as there is no perceivable pattern between sparsity and inference speeds when
comparing the use of a prunable dense classification head and a Butterfly matrix.
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Sparsity Rand Mag SNIP GraSP SynFlow Butterfly + K-Matrix

Butterfly matrix class-head
0.05 1.67 1.72 1.71 1.701 1.782 77.11
0.1 1.66 1.74 1.73 1.703 1.957 -
0.2 1.68 1.68 1.70 1.68 1.6659 -
0.5 1.667 1.67 1.69 1.70 1.71 -
1 1.628 1.63 1.66 1.71 1.71 -
2 1.642 1.68 1.66 1.60 1.663 -

0.05 1.672 1.721 1.62 1.71 1.68 75.02
0.1 1.656 1.729 1.61 1.66 1.65 74.61
0.2 1.69 1.677 1.59 1.647 1.685 76.82
0.5 1.67 1.69 1.62 1.66 1.68 75.23
1 1.629 1.689 1.64 1.595 1.693 75.20
2 1.546 1.692 1.70 1.64 1.669 75.59

Table 2: Reported inference speed in seconds for VGG-16 running on CIFAR-10. The bottom half
of the table uses a prunable dense classification head, while the top half uses a butterfly matrix as the
classification head. For Butterfly + K-Matrix, all 2D convolutional layers in VGG16 are replaced
with a Kaleidoscope-matrix implementation of 2D convolutions. When using a Butterfly matrix head
and K-matrices, the model is not iteratively prunable. Additionally, the extremely slow inference
time is most likely due to inefficiencies in the SpMV implementation for these 2D convolution
operations.

Finally, when replacing the entire VGG-16 model with K-matrices, it is observed that the model
inference speed is significantly slower. I suspect that this is an issue with the implementation of
the SpMV kernel for Butterfly matrices and the implementation [2, 3] use for KOPS2D layers, which
are the drop-in replacement of 2D convolutional layers with K-matrices. For completion sake the
numbers were kept in, but they do not offer useful analysis for the relationship between pruning and
Butterfly matrices.

Figure 1: For sparsity 10−k for k ∈ 0.05, 0.1, 0.2, 0.5, 1, 2, the plot shows the top-1 accuracy of
VGG-16 on CIFAR-10 for each pruning method using either a dense classification head or a Butterfly
matrix head (labelled as + BH and with dashed lines). Generally, the introduction of the Butterfly
matrix head degrades the performance of all pruning methods, most likely due to incompatability
between the pruning metric and the fact that the Butterfly Matrix can be considered "already pruned".
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Effect on Model Accuracy The effects of pruning and the use of Butterfly-matrix classification
heads on accuracy of VGG-16 on CIFAR-10 are summarized in 1.

Without considering the Butterfly matrix classification heads, GraSP notably performs poorly in the
given setup, and there is an observable high variance in performance, although it generally performs
worse than every other method. Additionally, SynFlow suffers from layer collapse despite its design
to combat layer collapse, although this is most likely a a hyperparameter tuning issue because they
report different results in their own paper. Only SNIP shows a small degradation in performance as
sparsity increases with the overall model performance being strong.

The introduction of the Butterfly matrix head significantly degrades the performance of many of the
pruning methods and even leads to faster layer collapse. Firstly, every evaluated pruning method
collapses for sparsity 10−2. In the case of magnitude-based pruning, when using the hyperparam-
eters specified in the original Pruning assignment (200 pre-training epochs and 100 post-training
epochs), the model always collapses no matter what the sparsity is set to. This observation is related
to the inference time slow-downs discussed in the previous section, although the exact reasoning
is a bit unclear. For random pruning and SynFlow, the introduction of the Butterfly head does not
affect the overall accuracy much: generally, either method exhibits layer collapse with a prunable
dense classification head if and only if it exhibits layer collapse with a Butterfly matrix classification
head. However, SNIP and GraSP both show significant degradations in performance, with SNIP
only showing layer collapse with the introduction of the Butterfly matrix classification head.

Finally, it is notable that from Table 1, while replacing all VGG-16 layers with Butterfly/K-matrices
significantly increases inference time, the overall accuracy is similar in performance to a base VGG-
16. However, this is not that surprising, considering the sparsity introduced by factorized matrices
is far less than that of the iterative pruning methods used.

Figure 2: For sparsity 10−k for k ∈ 0.05, 0.1, 0.2, 0.5, 1, 2, this plot shows the FLOPS sparsity
for each pruning method with and without the Butterfly layer head applied to VGG16 on CIFAR-10.
Notably, the introduction of the Butterfly head generally increases the FLOPS sparsity by a marginal
amount because the Butterfly layer head is not prunable, except for methods like random pruning
and SynFlow that explicitly prune a certain percentage of the weights.
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Figure 3: For sparsity 100.5, this plot shows the FLOPS sparsity of each layer for each pruning
method with and without the Butterfly layer head applied to VGG16 on CIFAR-10.

Effect on FLOPS Sparsity The results are shown in Figures 2 and 3. Quite unsurprisingly, the
effect of introducing a single Butterfly matrix head with the pruning methods does not affect FLOPS
sparsity that much, although it is generally slightly higher overall and per layer. Additionally, we
note that most layers tend to prune quite aggressively for deeper layers in the network, and across
all methods, generally the layer right before the classification head is more aggressively pruned if
the final classification head is a Butterfly matrix.

Overall, the structure of VGG-16 is to increase in model parameters as the model gets deeper except
for the prediction head, and all pruning methods other than random pruning will prune a higher
percentage of these layers as expected. Additionally, SynFlow is the most conservative in prun-
ing earlier smaller layers as expected to prevent bottlenecks, but heavily prunes the larger layers.
Magnitude-based pruning has the staircase effect as described in the SynFlow paper, which is due
to layer pruning at different rates.

5 Discussion and Conclusion

The original Butterfly matrix paper [2] suggests that Butterfly matrices are a structured form of
pruning that is well understood. In this sense, there seems to be an implicit metric used to factorize
weight matrices that Butterfly matrices provide, and using such a metric with other pruning methods
may cause conflicts and therefore issues during pruning. Generally, replacing an entire network with
Butterfly matrices without any extra pruning steps seems to yield comparable model performance to
the base model. However, because the compression ratio of Butterfly matrices is not nearly as high
as performing iterative pruning methods, it is questionable how effective this may be in comparison
to pruning methods and following the Lottery Ticket Hypothesis.

Seemingly combining factored matrix representations with additional pruning is harmful to model
performance, as factored matrix representations can be thought of as an initial set of pruned weights
that the pruning methods cannot control. This fact suggests that as the sparsity level increases for
each pruning method, it has a higher chance of leading to layer collapse due to a set of weights being
pruned that conflicts with a specific pruning method’s decision-making: we also observe this in our
experiments, as introducing Butterfly matrix heads generally never leads to performance benefits in
accuracy, inference speeds, or FLOPS sparsity.
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Finally, it would be interesting to replace more components of the model with Butterfly layers rather
than just the classification head. The current implementation of replacing 2D convolutional layers
in VGG-16 with KOPS2D layers, which are a method of using Butterfly matrices to implement 2D
convolutional layers, is seemingly much slower than the standard 2D convolutional layer, making
it not a good point of comparison for the current pruning methods. Some future work would be to
compare some more efficient and sparser factorized matrix representations interspersed throughout
the network with pre-existing pruning methods, and also potentially add the option to prune these
factored matrices. Because these factored matrices are low-rank, I suspect that pruning them would
quickly lead to layer collapse, but it would be interesting to see how introducing "fixed" sparsity
in the form of these factored matrices at different parts of the model would affect each pruning
method.
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