
A Simple Framework for Intrinsic Reward-Shaping
for RL using LLM Feedback

Alex Zhang†, Ananya Parashar♢, Dwaipayan Saha†
† Department of Computer Science, Princeton University ♢Department of ORFE, Princeton University

{alzhang, parashar, dsaha}@princeton.edu

Abstract

The credit assignment problem is a long-standing issue in reinforcement learning
(RL) applications. In complex settings with sparse reward signals and large state
and action spaces, an agent naively exploring an environment without any prior
knowledge requires an enormous amount of training data that is computationally
intractable. One method for alleviating this issue is reward shaping, where intrinsic
rewards are provided to an agent at intermediate states based on prior knowledge
known by an expert. Large language models (LLMs) are known to contain a
wealth of domain knowledge that can be used as a prior for many environments
and can be harnessed for reward shaping. In this work, we exploit the code
generation capabilities, reasoning, and domain knowledge of LLMs to iteratively
generate and refine intrinsic reward functions on Pokemon Showdown, a multi-
agent strategy game featuring complex interactions and stochasticity. We propose
three simple methods of reward shaping using LLMs for iteratively generating
reward functions during deep RL training. We first demonstrate our simple reward
shaping framework on an application of Q-learning to the OpenAI MountainCar-
v0 environment, then evaluate our reward shaping methods against each other
as well as against other deep RL baselines on Pokemon Showdown, a stochastic
1-v-1 strategy game with readily available strategies and game information on
the web. We demonstrate that under a fixed number of training iterations, reward
shaping with LLMs can achieve higher sample efficiency by injecting its domain
knowledge to reduce the agent’s exploration of redundant states, with all three of
our proposed methods achieving a > 80% win-rate over the base Deep Q Network
model. Furthermore, the intrinsic reward functions generated by the LLMs are
interpretable and easy to understand based on domain knowledge of the game. We
publicly release our code1.

1 Introduction

Modern reinforcement learning (RL) methods suffer from sample inefficiency issues during training,
often requiring astronomical amounts of trajectory data to converge. One large factor in this issue is the
credit assignment problem, where it is difficult to naively explore environments with combinatorially
large state spaces and properly attribute rewards to "good" states. This issue is exacerbated in
environments with sparse rewards, where a reward is generally only awarded for completing a single
objective. Intuitively, most arbitrary game settings have a single "goal" condition (i.e. win the game),
in which reward functions are generally sparse. A potential solution is to add an additional intrinsic
reward at every step that is defined by some human expert with known prior about the environment to
reduce the space of "redundant" states that the agent explores. However, prior works have shown that
manual trial-and-error reward design and expert-designed reward functions often lead to sub-optimal
learned behaviors [BKS+23]. For example, the famous "move 37" made by AlphaGo [SHM+] was

1https://github.com/alexzhang13/reward-shaping-rl

https://github.com/alexzhang13/reward-shaping-rl

initially deemed unpredictable by any human expert, and any dense rewarding scheme defined by a
human expert would have most likely never led to this move being made.

For complex domains such as Minecraft [FWJ+22], NetHack [KNM+20], and Pokemon [Sah23], it
is difficult to provide "provable" guarantees for effective reward shaping in terms of sample efficiency.
Furthermore, most domain knowledge for these environments is well-described in text through
sources such as wikis, forums, and other player-curated content. In recent history, large language
models (LLMs) have proven to be effective databases and generators of text content, with hundreds
of new works showcasing their effectiveness in navigating text domains. Eureka [MLW+23] builds
an explicit, highly-scalable framework for distributed training of RL agents using LLMs to generate
rewards by generating reward functions in Python. However, their work focuses on low-level control
tasks, and they explicitly use LLMs for their code generation abilities and self-reflection capabilities.

We build on the [MLW+23] work, but focus mainly on providing a simple framework for reward
shaping by generating code that is applicable to any environment. In this work, we do the following:

1. Create a simple, barebones framework for using LLMs to generate intrinsic reward
functions for RL agents and refine these reward functions after each episode. We develop
this framework to be extremely easy to integrate into any RL application, even without
distributed forms of training.

2. Propose three simple methods for determining how reward-shaping feedback is used to
train popular reinforcement learning algorithms like tabular Q-learning, deep Q-learning
[MKS+13], and proximal policy optimization (PPO) [SWD+17].

3. Evaluate our method on simple gym-retro environments and Pokemon Showdown (an
unsolved game) against tabula rasa deep RL methods and heuristic methods to demonstrate
that prior knowledge from LLMs are useful.

We focus our LLM-based reward shaping specifically on Pokemon Showdown, as there exists a
plethora of online information about strategies and the game that are shown to be in the training
data of many LLMs. The intuitive idea is that LLMs contain knowledge about well-known domains
that are well-described in text but often difficult to apply in a rule-based framework due to the
inherent difficulty of grounding language to decisions. In the case of reward shaping by generating
reward functions using LLMs, the code-generated reward function acts as the implicit grounding
between language and a decision-making agent. Thus, we are interested in understanding whether
the reasoning capabilities and knowledge of an LLM can be leveraged to guide the learning of RL
algorithms in a more sample efficient manner.

2 Background and Related Works

Building learnable agents using reinforcement learning has proven to be difficult in environments
with intractably large or abstract state and action spaces [OB+19]. This issue is apparent in most
deep RL algorithms that assume no prior knowledge about the environment, as they have to explore
an environment while visiting and trying redundant or "bad" actions/states. However, with the
abundance of human-knowledge encoded in language, a large question is whether these resources
can be leveraged to accelerate the learning process of RL methods.

2.1 Language Guided Reinforcement Learning

Injecting language information to influence a reinforcement learning algorithm is not a well-
understood field, but several prior approaches have been tried. For example, a class of RL methods
called "goal-conditioned reinforcement learning" [LZZ22] have grown in popularity in the past few
years. The general concept is to condition the behavior of the RL agent on both the state observations
and a specific "goal", which can be made a language goal (e.g. find the door). In SayCAN[ABB+22],
they demonstrate that given language captions of expert trajectories, they can scalably train robots
to perform actions conditioned on language. The benefit of these methods is that they leverage the
reasoning capabilities of LLMs to break down a complex instruction into sentences that their goal-
conditioned agents have been trained on. However, these methods inherently rely on the existence of
labelled expert trajectories, which is often not readily available.

2

Another approach to language-guided RL is to leverage language in model-based reinforcement
learning methods, which rely on a model of the environment to learn an optimal policy. It is known
and quite intuitive [SB18] that knowing the transition probabilities of an environment can provide
provably faster convergence, so it has become an area of interest to leverage these methods by
jointly learning a model of an environment while optimizing a policy. Because of the abundance of
visual environments, methods like CLIP [RKH+21] provide a way to leverage language information
into the learning of a world model [HS18] that can be used for model-based RL. For example, in
LanGWM[PPZC23], they learn a vision-language embedded representation of the world model and
build on top of [HLNB22] to achieve SOTA results on 3D environments.

Finally, a set of methods have recently arisen that try and influence the training process of an
RL algorithm by modifying the reward function. In Motif [KDS+23], they train a reward model
using an annotated dataset of language captions on Nethack [KNM+20] and use this "instrinsic"
reward model to influence the learning of an RL agent. Moreover, in [YGF+23], they show that the
reward model itself can be generated entirely in code by an LLM and they apply this reward shaping
method with specific prompting techniques to robotics control tasks. Finally, in Eureka [MLW+23],
the authors build a distributed training framework for reward shaping with LLMs (GPT-4) to solve a
suite of low-level control tasks for simulated robotics motion. They also propose a set of methods that
reflect on and "evolve" their reward functions as a kind of meta-learner. Our work is heavily inspired
by this suite of works, and we aim to develop a simple framework on a more complex task where
language information and reasoning capabilities can be leveraged better (specifically in Pokemon
Showdown).

2.2 Reward Shaping

Many environments contain a single true sparse reward that signals that the agent has won or lost. In
these settings, the credit assignment problem becomes exacerbated due to the combinatorially large
state spaces that an agent has to traverse to reach any kind of reward. Reward shaping is a way of
"injecting" pseudo-rewards at intermediate states based on a prior understanding of what is "good"
to do in the environment. This thus accelerates the exploration process by encouraging the agent to
avoid exploring states that are known to be "bad." This process is more formally described below in
the Q-learning framework.

In traditional Q-learning, we define the Q-function which as the expected discounted sum of rewards
by choosing action a from state s. That is for actions a and a′ and states s and s′ as well as reward r
and discount factor γ, we have:

Q∗(s, a) = E[r + γmax
a′

Q∗(s′, a′)] (1)

Then the iterative update is:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)] (2)

for learning rate α. In this update, we may intuitively think of this as improving the Q-function
by updating with the prior value of the Q-function added to the the temporal difference (TD) error
scaled by the learning rate. This error is attained by summing the immediate reward gained (r) to the
discounted optimal Q-value of the next state to get the TD target then subtracting the prior value of
the Q-function.

In the setting of our paper, as we mentioned before, we do not modify the received reward r, rather
we provide additional shaped reward for specific transitions2:

Q(s, a)← Q(s, a) + α[r + F (s, s′)︸ ︷︷ ︸
additional reward

+γmax
a′

Q(s′, a′)−Q(s, a)]

The function F typically reflects domain knowledge which is manually encoded and r + F (s, s′) is
the shaped reward for an action. Further, we denote Gπ =

∑∞
i=0 γ

i(ri + F (si, si+1)) as the shaped
reward for the entire episode. We may see that for the shaped reward:

• F (s, s′) > 0 provides positive reward for transitioning from states s to s′

2https://gibberblot.github.io/rl-notes/single-agent/reward-shaping.html

3

https://gibberblot.github.io/rl-notes/single-agent/reward-shaping.html

• F (s, s′) < 0 provides a small negative reward for transitioning from states s to s′

Thus this shaped reward either encourages or discourages such actions in future exploitation, respec-
tively. Works such as [KDS+23] learn F (s, s′) through explicit supervised training. Our work is
most similar to [YGF+23],[MLW+23], which iteratively generates Ft(s, s

′) using an LLM.

2.3 LLM for Code Generation

Generating reward functions using LLMs is done through code generation because code is the
"language" understood by the environment. Furthermore, code generation and code synthesis are
active areas of research in the NLP community that are constantly improved on. There are several
examples of explicitly fine-tuned models [RGG+23], [ALK+23], [NHX+23] for coding and also
examples of base LLMs like GPT-4 being capable of coding zero-shot [ZW23].

Similar to [MLW+23], we focus on code generation of reward functions that is iterated on as the
training process continues. The initial generated reward function will most likely be faulty or too
simple, so we focus on refinement through generic iterative code refinement techniques used for LLM
code generation. Furthermore, while [MLW+23] focuses on distributed RL training, we simplify the
setting and the framework’s computational overhead by focusing on a single RL agent.

3 Method

As briefly mentioned in our introduction, our proposed method is to use LLMs, primarily GPT-3.5
or GPT-4, in order to create reward functions. Inevitably, harnessing domain knowledge requires
explicit prompting (e.g. identifying the domain to the LLM), but we do not focus on prompt-tuning
in this work and instead focus on the reward function refining process. We do this through three
different methods: sequential feedback, tree based feedback, and moving target feedback as depicted
in Figure 1.

Figure 1: Left: Sequential Feedback, Center: Tree Based Feedback, Right: Moving Target Feedback

3.1 Method 1: Sequential Feedback

The simplest form of reward shaping is to start with a randomly initialized model and query the
model to generate an intrinsic reward function F0(s, s

′) (in code) based on its prior knowledge about
the environment. Then, after training the model for a fixed number of episodes, we sample a set
of recent trajectories/transitions and query the LLM to generate a new intrinsic reward function
F1(s, s

′) based on its prior knowledge about the environment and these transitions. We then train a
model on this new reward function. Effectively, we sequentially generate a series of intrinsic reward
functions F0(s, s

′), F1(s, s
′), ..., FM (s, s′). Furthermore, we impose a Markovian assumption on

how the reward function evolves, thus allowing us to develop a simple algorithm as in Algorithm 1.

4

Algorithm 1: Sequential Reward Function Generation
Data: Number of meta-optimization steps T , Training length L
Result: MT

begin
Query LLM to compute F0(s, s

′) for all (s, s′) ∈ C;
Train model M0 using shaped rewards using F0(s, s

′);
while t ≤ T do

Prompt LLM to get the generative distribution P(Ft(s, s
′)|Ft−1(s, s

′));
Sample Ft(·) from P(Ft(s, s

′)|Ft−1(s, s
′)) by querying the LLM;

Train model Mt using Ft(s, s
′) for L iterations;

end
end

3.2 Method 2: Tree-based Feedback

The evolutionary search algorithm for LLM-based reward shaping proposed in [MLW+23] is designed
for highly-distributed reinforcement learning training algorithms in order to iteratively produce and
refine reward functions. We propose a similar, tree-based search algorithm on a simpler scale that
builds on top of Sequential Feedback method but designed for the purpose of Pokemon Showdown.

Outlining the basic iterations of this optimization method, we first start off by sampling independently
and identically distributed reward outputs from the LLM. Then, we simply take the best-performing
reward out of these as context and use the LLM to generate K more of these independently and
identically distributed reward outputs and keep iteratively performing this process for a certain
number of iterations. The algorithm looks as in Algorithm 2.

Algorithm 2: Tree-based Reward Function Generation
Data: Number of meta-optimization steps T , Training length L
Result: MT

begin
Query LLM to compute F0(s, s

′) for all (s, s′) ∈ C;
Train model M0 using shaped rewards using F0(s, s

′);
while t ≤ T do

Prompt LLM to get the generative distribution P(Ft(s, s
′)|F ∗

t−1(s, s
′));

Sample K reward functions F i
t (·) for L iterations where i ∈ [K] from

P(Ft(s, s
′)|F ∗

t−1(s, s
′));

Train a model M i
t using F i

t (s, s
′) for each i ∈ [K], generating K models {M i

t}Ki=1 ;
Save reward-maximizing M∗

t = argmax
j∈[K]

M j
t and the corresponding F ∗

t (·) = Ft(·);

end
end

3.3 Method 3: Moving Target Feedback

Until now, our techniques involve training new models with updated reward functions. However,
there is motivation behind iteratively updating the reward function via similar queries to the large
language model yet still retaining the parameter weights from the previous stage of training. This
instills a retention scheme in order to successively improve the objective, while still taking advantage
of the domain knowledge of the large language model and also avoiding drastic difference amongst
successive models. Overall, the moving target feedback scheme leads us to train the model episodi-
cally, but the shaped reward function gets updated over time. Thus, we may write this algorithm as
represented in Algorithm 3, where we iterate until the algorithm converges.

As mentioned in the next section, we utilize a variety of common reinforcement learning training
algorithms and variants primarily based off of Proximal Policy Optimization and Deep Q-Networks.
The aforementioned algorithms are a way to exploit the domain knowledge of the large language

5

Algorithm 3: Moving Target Reward Generation
Data: Training length L per fixed reward
Result: MT

begin
Query LLM to compute F0(s, s

′) for all (s, s′);
Train model M using shaped rewards using F0(s, s

′) for L iterations;
while not converged do

Query LLM to generate the distribution P(Ft(s, s
′)|Ft−1(s, s

′));
Sample Ft(·) from P(Ft(s, s

′)|Ft−1(s, s
′));

Continue training the model M using Ft(s, s
′) for L iterations;

end
end

model, but also be able to iteratively update the knowledge using the sequential feedback received on
the reward function from the previous iteration.

4 Environment

Figure 2: An example of a Deep Q-learning agent playing Pokemon Showdown against a bot.

Pokemon Showdown is a turn-based 1-v-1 battle game in which each player uses a team of up to six
Pokemon and tries to defeat the entirety of the opponent’s team of Pokemon. During each turn, both
players simultaneously make a decision, and the game plays out based on these decisions. The game
is highly complex and well-studied, featuring over 800 unique Pokemon, each with their own unique
abilities, attacks, and interactions with one another. The game is stochastic and the action space is
quite small (each Pokemon can only use up to four unique attacks in a single battle), making the game
especially interesting for reinforcement learning. The game is also adversarial, as optimal actions
are entirely determined by your opponent’s decision, which are unknown to the player. Furthermore,
there exists online forums such as Smogon3 dedicated to building the optimal teams and strategies
for competitive play, as well as official competitions (Pokemon VGC World Championships) that are
still active to this day. This fact makes the game especially interesting for language-guided RL, since
there is an abundance of online strategies, game data, and tutorials for playing the game.

There are several different game-modes, but we focus on fixed-team, single-battles, where both
players use the same team and only a single Pokemon per-player can be active at once. For the
purposes of this setting, the main points of interest are type-matchups and the statistics of each
Pokemon. In Pokemon Showdown, each Pokemon has up to two types (e.g. water, grass, fire, ice,
etc.), which determine how effective an opponents attack is on them (for example, water is strong

3https://www.smogon.com/

6

https://www.smogon.com/

against fire). Furthermore, each Pokemon has access to up to four unique attacks with their own
associated typing, and every turn each player can choose to use one of these attacks or use a turn
switching out the currently active Pokemon with one of the others. Additionally, each Pokemon has
six main statistics: health, attack, special attack, defense, special defense, and speed.

A Pokemon "faints" when its health reaches 0, at which point it becomes unusable in battle. Speed is
used to determine which Pokemon attacks first in a turn (unless they are switched out), and the other
statistics determine how powerful an attack is. Furthermore, there are certain attacks that raise these
statistics in battle, which can be used strategically to set up win games. These interactions are hard to
capture well through naive exploration, but are well understood by players online and can potentially
be distilled into an RL agent through language.

We train our agent on poke-env (https://github.com/hsahovic/poke-env), which provides
a gym-interface to Showdown. We also run and train all our experiments on a local server, which
allows us to run multiple games in parallel.

5 Experiments

5.1 Baselines

We focus on applying reward shaping to two popular deep RL algorithms, PPO [SWD+17] and deep
Q-learning [MKS+13].

5.1.1 Proximal Policy Optimization

Algorithm 4: PPO-Clip
Input: initial policy parameters θ0, initial value function parameters ϕ0

for k = 0, 1, 2, . . . do
Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environment.

Compute rewards-to-go R̂l. Compute advantage estimates, Âl (using any method of
advantage estimation) based on the current value function Vϕk

. Update the policy by
maximizing the PPO-Clip objective:

θk+1 = argmax
θ

1

|Dk|L
∑
τ∈Dk

L∑
l=0

min

(
πθ(al|sl)
πθk(al|sl)

Aπθk (sl, al), g(ϵ, A
πθk (sl, al))

)
,

typically via stochastic gradient ascent with Adam. Fit value function by regression on
mean-squared error:

ϕk+1 = argmin
ϕ

1

|Dk|L
∑
τ∈Dk

L∑
l=0

(
Vϕ(sl)− R̂l

)2

,

where we redefine the rewards-to-go function using shaped rewards:

R̂l =

L∑
i=l

R(si, ai, si+1) + Ft(si, si+1)

typically via some gradient descent algorithm.
end

Proximal Policy Optimization [SWD+17] is descendant of a Trust Region Policy Optimization
[SLM+17], which uses a suite of first order approximations instead of complex second order tech-
niques. We use PPO-clip, the updates for which are characterized as,

θk+1 = argmax
θ

Es,a∼πθk
[L(s, a, θk, θ)] (3)

where the loss is defined as

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), clip
(

πθ(a|s)
πθk(a|s)

, 1− ϵ, 1 + ϵ

)
Aπθk (s, a)

)
(4)

7

https://github.com/hsahovic/poke-env

Here ϵ controls how far new policy can move from the previous step to avoid having updates that are
too large. Further, Aπθk is defined as the estimated advantage at update step k which are computed
from the current value function estimate and environment rewards. We inject our reward shaping
technique into the aforementioned rewards to instead use the shaped reward. Our implementation
is built upon the reference provided by OpenAI [SWD+17], which also provides the pseudocode in
Algorithm 4 that we modify to incorporate the additional shaped rewards F (s, s′) 4:

5.1.2 Deep Q-Networks

Algorithm 5: Deep Q-learning with Experience Replay and Reward Shaping
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode = 1,M do

Initialise sequence s1 = {x1} and preprocessed sequenced ϕ1 = ϕ(s1)
for t = 1, T do

With probability ϵ select a random action at
otherwise select at = maxa Q

∗(ϕ(s), a; θ)
Execute action at in emulator and observe reward rt and image xt+1

Set s′ = s, at, xt+1 and preprocess ϕt+1 = ϕ(s′)
Store transition (ϕt, at, rt + Ft(s, s

′), ϕt+1) in D
Sample random minibatch of transitions (ϕj , aj , rj + Fj(s, s

′), ϕj+1) from D

Set yj =
{
rj + Fj(s, s

′) for terminal ϕj+1

rj + Fj(s, s
′) + γmaxa′ Q(ϕj+1, a

′; θ) for non-terminal ϕj+1

Perform a gradient descent step on (yj −Q(ϕj , aj ; θ))
2

end
end

We introduced the traditional Q-learning method in the prior section as a model-free reinforcement
learning algorithm, specifically looking at the intuition behind the update in Equation 2 as well
as adding the shaped reward here. We also defined the optimal Q-function Q∗ (defined using the
Bellman optimality equation in Equation 1). During the implementation of the Q-learning algorithm,
we represent this function as a Q-table which stores the expected reward of each state-action pair
and iteratively updates as the agents continues exploring. However, when the number of actions
and states grows, storing each state-action pair is expensive memory-wise and it also becomes more
unlikely that we explore every state to create the Q-table in a reasonable amount of time. Thus for
large environments, we use Deep Q-Learning ([MKS+13]), replacing the Q-table representation
of the Q-function with a neural network with parameters θ to approximate the Q-function, that
is Q(s, a; θ) ≈ Q∗(s, a). We compute this by minimizing our loss, the squared sum of temporal
difference errors, at each step i:

Li(θi) = Es,a,r,s′∼ρ(.)

[
(yi −Q(s, a; θi))

2
]

Here, yi is the TD target, formally written as:

yi = r + γmax
a′

Q(s′, a′; θi−1)

Moreover, ρ is the information learned from the environment of the distribution of {s, a, r, s’} where
r is the reward gained by taking action a from state s.

The concept of experience replay, as introduced in [MKS+13], involves pooling every agent’s
experiences at each time-step denoted by et = (st, at, rt, st+1) across episodes. These experiences
are then stored in a circular buffer called the replay buffer. This allows us to sample random mini-
batches from the replay buffer to train the network, rather than solely relying on the latest experience.
This elucidates one of the advantages of this method – variance reduction as a result of random
sampling. Moreover, we enhance data efficiency by as potentially experiences could be reused in
multiple weight updates.

4Note that within the algorithm in the PPO-objective we use g(·) which is a simplified version of Equation 4,
as suggested in [SWD+17].

8

Now, we use our reward-shaping technique to modify the rewards defined for Deep Q-Learning.
We use pseudo-code for Deep Q-Learning with experience replay from [MKS+13] and modify it
to include our reward shaping by adding the function Fi(s, s

′) to our original reward ri (where
s′ = st+1 and s = st) as displayed in Algorithm 5.

5.2 Simple Example: MountainCar-v0

Our most simple example comes from OpenAI’s Gym Environment called "Mountain Car" as
in [Far23]. In this Markov Decision Process, there are two hills, with the mountain car placed
stochastically at the bottom of the valley between them. The objective of the mountain car is to
reach the flag on the top of the right hill (x position of 0.5) in the least amount of time possible by
controlling its acceleration. The mountain car begins with zero velocity at some point between the
mountains (between −0.6 and −0.4 where the x axis is defined along −1.2 to 0.6). As such, the
observation space for the mountain car is two dimensional consisting of the position of the mountain
car along the x-axis and velocity of the mountain car at each time step. Additionally, there are three
possibilities for the mountain car’s acceleration: accelerate right, accelerate left, and don’t accelerate.
Moreover, rewards are negative for each time step, incentivizing the mountain car to reach the flag
faster. We terminate if we obtain this goal or if we reach the maximum length of the episode of 200.

We make queries to GPT-3.5 Turbo in order to produce reward functions while training. The intrinsic
reward function GPT-3.5 Turbo produced is given in Figure 3 and results are given in Figure 4, where
we see that the implementation of Q-learning with the additional LLM feedback given by generated
reward function code outperforms the simple Q-learning with sparse reward.

Figure 3: Intrinsic reward function by
GPT3.5 Turbo:

def reward(x_position , velocity , action):
if x_position >= 0.5 and action == 2:

At right -most hill , accelerate right
return 0.1 # Return reward

elif x_position <= 0 and action == 0:
In valley , accelerate left
return 0.1

Return a reward
elif x_position <= -0.5 and action == 2:

At left -most hill , accelerate right
return 0.1 # Return reward

else:
return 0

Figure 4: Performance of Q-learning
with sparse reward vs. Q-learning with
additional LLM feedback as generated
reward function code.

5.3 Pokemon Showdown Battles

5.3.1 Input Representation

We create a vector representation of the Pokemon Showdown environment that is used as input to
each model. In this setting, we ignore the effects of abilities and items since every training episode
uses the same team, so effectively the abilities and items are unique to the Pokemon that hold them.
Thus, to represent the current state, we provide the available moves m1, ...,m4 indexed by a unique
identity, and attributes about each of the agent’s Pokemon Pp

1 , ...,P
p
6 and the opponent’s Pokemon

Po
1 , ...,Po

6 . Thus, the current observation is

Ot = (m1,m2,m3,m4,Pp
1 ,P

p
2 ,P

p
3 ,P

p
4 ,P

p
5 ,P

p
6 ,Po

1 ,Po
2 ,Po

3 ,Po
4 ,Po

5 ,Po
6) ∈ R58

where each Pokemon Pi is

Pi = (is_active, is_fainted, status, HP, attack, defense, sp.att, sp.def, speed)

5.3.2 Cross-evaluation Performance

We evaluate the performance of each baseline method, as well as the three methods described
in Section 3. Each model was trained for the same total number of episodes (10000), and their
performance against eachother is shown in Table 1. For reward shaping method 1 (M1), we train each

9

sequential for 1000 episodes and query for an intrinsic reward function 10 times. For reward shaping
method 2 (M2), we train each episode for 500 episodes, then query for 5 reward functions. We then
pick the best intrinsic reward, and condition on the previous reward function. We repeat this process
4 times. Finally, for reward shaping method 3, we update the reward function every 1000 episodes
without resetting the model weights.

Table 1: We had each of our methods cross-evaluated against eachother over a total of 50 games. The
win-rate of each method (row wins vs. column) is listed below.

Models DQN DQN+M1 DQN+M2 DQN+M3 PPO PPO+M1 PPO+M2 PPO+M3

DQN - 0.16 0.08 0.14 0.46 0.6 0.14 0.18
DQN+M1 0.84 - 0.9 0.88 0.6 0.56 0.06 0.12
DQN+M2 0.92 0.1 - 0.22 0.14 0.6 0.36 0.24
DQN+M3 0.86 0.12 0.78 - 0.54 0.64 0.54 0.52
PPO 0.54 0.44 0.4 0.32 - 0.26 0.16 0.18

PPO+M1 0.4 0.44 0.4 0.36 0.74 - 0.3 0.22
PPO+M2 0.86 0.94 0.64 0.46 0.84 0.7 - 0.38
PPO+M3 0.82 0.88 0.76 0.48 0.82 0.78 0.62 -

There are some interesting results to note here, namely that reward shaping for these models performs
quite well compared to the base model on a limited number of steps. These results are not
conclusive to show that reward shaping with LLMs offers a clear boost in sample efficiency, as
for PPO and DQN, we did not take advantage tricks like asynchronous updates and proper reward
clipping often used for these methods. However, they offer insight the usefulness of using domain
knowledge from an LLM to influence the shaping of a reward function. For example, consider the
final shaped reward function generated by the end of applying Method 2 to DQN in Figure 5. By
prompting the model to utilize its understanding of Pokemon, it is able to understand that an important
subgoal in this game is to defeat the enemy’s individual Pokemon and deplete their health and train
the model to maximize these subgoals.

Figure 5: Intrinsic reward function generated by Method 2. Intuitively, the LLM is rewarding the
agent for defeating an enemy Pokemon and dealing as much damage as possible in the current
transition.

def reward(prev_battle_state , next_battle_state):
prev_fainted = [mon for mon in prev_battle_state.opponent_team.values () if mon.fainted]
next_fainted = [mon for mon in next_battle_state.opponent_team.values () if mon.fainted]

prev_total_hp = sum([mon.current_hp for mon in prev_battle_state.opponent_team.values ()])
next_total_hp = sum([mon.current_hp for mon in next_battle_state.opponent_team.values ()])

reward_defeat = len(next_fainted) - len(prev_fainted)
reward_damage = (prev_total_hp - next_total_hp) / 1000.0

return reward_defeat + reward_damage

5.3.3 Comparison against Heuristic Algorithms

As mentioned earlier, Pokemon Showdown is heavily based on the used strategy, so better performance
against a certain strategy A that consistently beats a strategy B does not transitively imply better
performance against B. Furthermore, since the table in Table 1 was cross-evaluated, it is unclear
how good these methods are against other as general strategies. There are several basic heuristic
algorithms in this setting that are easy to understand for a human, and are also easy to replicate with
rule-based mechanisms. We evaluate our methods against these heuristic algorithms. These heuristic
algorithms are specifically:

1. Random: The agent chooses a completely random action, which includes wasting a turn
switching out your active Pokemon.

2. Random Attack: The agent always chooses to attack by selecting a random move from the
currently active Pokemon.

10

Figure 6: Comparison of our proposed methods and baselines against known Pokemon Showdown
heuristic methods. All methods perform well against a random baseline, but struggle against the
damage-calculating heuristic.

3. Max Attack: The agent computes the attack that deals the maximum amount of damage to
the opponent’s active Pokemon based on damage multipliers, typing, and attack base power,
and will always choose this move.

Notably, all of these strategies are easy to play against adversarially, but we do not expect the agent
to learn how to combat the hardest strategy since it has no access to damage calculations or type
interactions, and therefore must rely on the LLM to properly generate a reward function that reflects
these interactions.

From Figure 6, we see that generally our agents perform on par with an agent that attacks a lot.
Within 10000 episodes of a sparse reward and reward shaping, it learns a "local" minima of choosing
attacking/damaging moves, but none of the methods fare well against a damage-calculating heuristic.

6 Future Work and Limitations

The goal of this project was to demonstrate the usability of LLM-based reward shaping as a form of
language-guided RL in simple use-cases. There are several important limitations to address in this
work that are largely addressed by scaling both the environment and the training. We detail them
below.

6.1 Unwanted priors introduced by our embedding representation

The input representation given to our models is a relatively low-dimensional numerical embedding
representation that captures information about the game in a fixed manner. This representation
makes RL training computationally cheap, allowing the experiments to run on a single RTX3080Ti
GPU. However, the most generic form of input is to compress the text and numbers provided by the
Pokemon Showdown environment using a language model encoder and then to train a large model
over this high-dimensional input space. The learning process would converge significantly slower
in this way, but it also removes any biases provided by hand-selecting input features that would
influence the effect of reward-shaping using an LLM. Given more computational resources, this
approach would better highlight the effects of LLM-based reward shaping.

6.2 Expanding the difficulty of the full environment

The goal of this work is to demonstrate the application of LLM-based reward shaping on an arbitrary
but complex game environment. The primary benefits of using an LLM to generate an intrinsic
reward function come from the prior knowledge about game environments that LLMs contain and
their ability to easily iterate and inference at scale (relative to a human expert). It would be ideal to
evaluate this approach on a fully randomized version of the game where the agent potentially sees
a team, Pokemon, or strategy that it has never seen in its training distribution. However, observing
these "generalization" benefits requires a large amount of pre-training regardless of whether or

11

not an "optimal" intrinsic-reward function is created, so it was not within the scope of this work.
Nevertheless, there is room for future work to expand this training to the full Pokemon Showdown
game.

6.3 Playing against real opponents

A large appeal of Pokemon Showdown for reward shaping is the adversarial nature of the game
and the aspect of "reading your opponent," making it impossible to develop an "optimal" bot that
consistently beats any player. However, because of the combinatorially large number of teams and
strategies used in online games, it was infeasible for this work to try to play against real opponents.
In the real setting, the Pokemon names, abilities, items, effort values (EVs), etc. all matter, and the
interactions between these statistics have to be learned by a sufficiently large RL model. We did
attempt to deploy our bots on the online ladder to see if any meaningful results would arise, but
we found that the "wins" were generally attributed to opponents disconnecting or purposely losing,
making the results unmeaningful.

6.4 More extensive baseline training

Our current baseline methods are vanilla implementations of PPO and DQN. However, most deep
RL algorithms are hand-tuned for a specific domain, which we did not do in our experiments.
Furthermore, using other state of the art training mechanisms will be helpful in extrapolating the true
benefit of using reward shaping as mechanism to learn better policies whilst being significantly more
sample efficient and reaching convergence quicker.

6.5 Conditioning on learning history for reward shaping and to context window limitations

In all of the proposed methods, there exists the notion of sampling the reward function at step t notated
as Ft(s, s

′), from the generative probability distribution P(Ft(s, s
′)|Ft−1(s, s

′)). Specifically, at
each step, we train a model using the shaped reward function and evaluate the true associated
reward. More formally, one can think of the true reward Rt at each step t as a (R,B(R)) valued
random variable and the reward trajectory as the following stochastic process {Rt}0≤t≤T . Further,
we condition upon Ft−1(s, s

′), which means that, formally, we condition upon the sigma algebra
generated by the events up to time step t − 1, i.e. σ(R0, R1, . . . , Rt−1). In simpler terms, we are
encoding the information gained from training the model with the sampled reward function at steps
0, . . . , t− 1 as well as the corresponding performance in terms of true reward, which is generated by
training with the shaped reward.

However, there is a caveat. It is known that even the most advanced language models such as GPT-4
have a limited context window. As a result, it is not often possible to condition on the entire history.
As a remedy, we propose truncating to most recent history that fits within the allowed context window.
The motivation behind this is that the model is iteratively making small improvement steps and the
most recent history is the most relevant, instead of implementing remedies such as random sampling
along the trajectory.

6.6 LLM reward function code generation errors

In order to ensure the correct execution of our tasks by the LLM, our prompting to the LLM must
be precise. We must specify multiple constraints to the LLM, outside of the immediate prompt of
reward shaping, which may seem obvious. That is, we must specify to the LLM to not generate any
other text other than the function (i.e. not respond to the prompt, rather simply provide code), to not
execute the code that the LLM outputs, etc. Such comprehensive and precise instruction is essential
to ensuring that the code generation is as intended and produces the desired behaviors – if this is not
given, there are multiple compiler errors.

6.7 Reproducibility

We noticed some inconsistencies in how the LLM generates the reward function. Method 2 is the
most consistent due to generating multiple reward functions, but often our reward functions generated
by the LLM were faulty (compiler errors, syntax errors, incorrect API calls, etc.) that required extra

12

manual engineering (e.g. restart from that checkpoint) to get working. We are looking into how
coding LLM approaches like [LCC+22] to provide a more robust framework for reward generation.

7 Conclusion

We have presented a simple framework for reward shaping with LLMs that works for non-parallelized
algorithms. We demonstrate that this method can achieve sample efficiency gains over naive ex-
ploration by leveraging domain knowledge in LLMs to shape the reward function. We show that
this method can work on Pokemon Showdown, which contains an abundance of available domain
knowledge and strategies online that were most likely present in the LLM’s training corpus.

8 Acknowledgements

We would like to thank Professor Sanjeev Arora for his kind feedback and suggestions, alongside an
engaging semester learning deep learning theory. Furthermore, we would like to thank Yikai Wu for
his insightful conversations.

References
[ABB+22] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron

David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex
Herzog, Daniel Ho, Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang,
Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry
Kalashnikov, Yuheng Kuang, Kuang-Huei Lee, Sergey Levine, Yao Lu, Linda Luu,
Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka Rao, Jarek Rettinghouse,
Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander Toshev, Vincent
Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy Zeng.
Do as i can and not as i say: Grounding language in robotic affordances. In arXiv
preprint arXiv:2204.01691, 2022.

[ALK+23] Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki,
Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey,
et al. Santacoder: don’t reach for the stars! arXiv preprint arXiv:2301.03988, 2023.

[BKS+23] Serena Booth, W. Bradley Knox, Julie Shah, Scott Niekum, Peter Stone, and Alessandro
Allievi. The perils of trial-and-error reward design: Misdesign through overfitting and
invalid task specifications. Proceedings of the AAAI Conference on Artificial Intelligence,
37(5):5920–5929, Jun. 2023.

[Far23] Farama Foundation. Gymnasium documentation. https://gymnasium.farama.org,
2023. Accessed: [12/04/2023].

[FWJ+22] Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu,
Andrew Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building
open-ended embodied agents with internet-scale knowledge. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information
Processing Systems, volume 35, pages 18343–18362. Curran Associates, Inc., 2022.

[HLNB22] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari
with discrete world models, 2022.

[HS18] David Ha and Jürgen Schmidhuber. World models. 2018.

[KDS+23] Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc
Bacon, Pascal Vincent, Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation
from artificial intelligence feedback, 2023.

[KNM+20] Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco
Selvatici, Edward Grefenstette, and Tim Rocktäschel. The nethack learning environment,
2020.

13

https://gymnasium.farama.org

[LCC+22] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert,
Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen
Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J.
Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas, Koray
Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with alphacode.
Science, 378(6624):1092–1097, December 2022.

[LZZ22] Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement
learning: Problems and solutions. In Lud De Raedt, editor, Proceedings of the Thirty-
First International Joint Conference on Artificial Intelligence, IJCAI-22, pages 5502–
5511. International Joint Conferences on Artificial Intelligence Organization, 7 2022.
Survey Track.

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning,
2013.

[MLW+23] Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani,
Dinesh Jayaraman, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-
level reward design via coding large language models, 2023.

[NHX+23] Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou.
Codegen2: Lessons for training llms on programming and natural languages, 2023.

[OB+19] OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Prze-
mysław Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris
Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov,
Henrique P. d. O. Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas
Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota
2 with large scale deep reinforcement learning, 2019.

[PPZC23] Rudra P. K. Poudel, Harit Pandya, Chao Zhang, and Roberto Cipolla. Langwm: Lan-
guage grounded world model, 2023.

[RGG+23] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen
Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evti-
mov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan
Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin,
Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation
models for code, 2023.

[RKH+21] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual models from natural language
supervision, 2021.

[Sah23] Haris Sahovic. poke-env: A python interface for training reinforcement learning bots to
battle on pokemon showdown. https://github.com/hsahovic/poke-env, 2023.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[SHM+] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. Mastering the game of go with deep neural networks and tree
search. 529(7587):484–489.

[SLM+17] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel.
Trust region policy optimization, 2017.

14

https://github.com/hsahovic/poke-env

[SWD+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms, 2017.

[YGF+23] Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gon-
zalez Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik,
Brian Ichter, Ted Xiao, Peng Xu, Andy Zeng, Tingnan Zhang, Nicolas Heess, Dorsa
Sadigh, Jie Tan, Yuval Tassa, and Fei Xia. Language to rewards for robotic skill
synthesis, 2023.

[ZW23] Li Zhong and Zilong Wang. Can chatgpt replace stackoverflow? a study on robustness
and reliability of large language model code generation, 2023.

15

	Introduction
	Background and Related Works
	Language Guided Reinforcement Learning
	Reward Shaping
	LLM for Code Generation

	Method
	Method 1: Sequential Feedback
	Method 2: Tree-based Feedback
	Method 3: Moving Target Feedback

	Environment
	Experiments
	Baselines
	Proximal Policy Optimization
	Deep Q-Networks

	Simple Example: MountainCar-v0
	Pokemon Showdown Battles
	Input Representation
	Cross-evaluation Performance
	Comparison against Heuristic Algorithms

	Future Work and Limitations
	Unwanted priors introduced by our embedding representation
	Expanding the difficulty of the full environment
	Playing against real opponents
	More extensive baseline training
	Conditioning on learning history for reward shaping and to context window limitations
	LLM reward function code generation errors
	Reproducibility

	Conclusion
	Acknowledgements

